
i 
 

 Africa Centre of Excellence on Technology 



i 
 

Enhanced Learning (ACETEL) 
 

Course Guide 
 

Introduction 
 
This course discusses the  fundamental components of security 

architecture. Topics treated include Components design; Principles of 
secure component design; Component identification; Security Design 

Principle; Principle of Secure Design; Principle of Software Security, 
Design Principle for Protection Mechanism; Trusted Computing Base and 

protection mechanism; formal security models and evaluation criteria; 
Project on modeling secure system 

 

Course Competencies 
 
To develop overall architecture and is developed to provide guidance 

during the design of the product. It outlines the level of assurance that is 
required and potential impacts that this level of security could have during 

the development stages on the product overall. 
 

Course Objectives 
 

 Explain the concept of security architecture analysis. 

 Value addition points in security architecture and design 
 Expatiate on the forms of security models, open and distributed 

systems. 
 

Working Through this Course 
 

In order to have a thorough understanding of the course units, you will 
need to read and understand the contents, practice the steps by 

designing and implementing a prototype architecture for a PC and 
evaluating the performance. This 2unit course designed to cover 

approximately thirteen weeks, and it will require 65 hours of study. 
 

There are two forms of assessments – formative and summative.  The 

formative assessments are designed to support the students to learn.  
This include the in-text questions and self-assessment exercises and 

major Assignments which may be Tutor Marked Assignments (TMAs) or 
Computer Marked Assignments (CMAs). The summative assessment is the 

final exam. 
 



ii 
 

Study Units 
 

Module 1:  Fundamental component of Design Architecture 

 Unit 1:  Architecture development and style 
 Unit 2:  Technological Development 

 Unit 3:  Performance Measure 
 

Module 2:  Instructional Set Architecture and Design 
Unit 1:  Memory Location and Operations 

Unit 2:  Addressing Modes 

Unit 3:  Instruction Types 
 

Module 3:  Secure Component Design 
 Unit 1:  Processing Unit Design 

 Unit 2:  Memory System Design 
 Unit 3:  Input and Output Design 

 
Module 4:  Security Design Principle 

 Unit 1:  Principle of Secure Design 
 Unit 2:  Principle of Software Security 

 Unit 3:  Design Principle for Protection Mechanism 
 Unit 4:  Trusted Computing Base 

 

References and Further Readings 
 

Von Neumman, J. (1945) First Draft of a Report on the EDVAC. Moore 

School of Electrical Engineering, University of Pennsylvania. 
 

Wang, S.P. and Ledley, R.S. (2013) Computer Architecture and Security: 
Fundamentals of Designing Secure Computer Systems. Available 

here  

 
What is The Difference Between RISC and CISC Architecture? Available 

here  
 

Mano, M.M. (2014) Computer System Architecture. 3rd Ed.  Available here   

 
Null, L. and Lobur, J. (2003) The Essentials of Computer Organization and 

Architecture. Jones and Bartlett Publishers, Sudbury, 
Massachusetts.   

 
Hennessey, J.L and Jouppi, N.P. (1991) Computer architecture and 

technology – An evolving interaction. Computer, pp. 18-29, 
September 1991. Available here  

 

https://www.pdfdrive.com/computer-architecture-and-security-fundamentals-of-designing-secure-computer-systems-e184601355.html
https://www.elprocus.com/difference-between-risc-and-cisc-architecture/
https://www.pdfdrive.com/computer-system-architecture-morris-mano-third-edition-e31004022.html
http://cva.stanford.edu/classes/cs99s/papers/hennessy-jouppi-computer-technology-and-architecture.pdf


iii 
 

Fernandez, E.B. (2013) Security Patterns in Practice. Wiley and Sons Ltd., 

United Kingdom.  
 

Obaidat, M.S. and Boudriga, N.A. (2010) Fundamentals of Performance 
Evaluation of Computer and Communication Systems. John Wiley & 

Sons, Inc. New Jersey. 
 

Obaidat, M.S. and Papadimitriou, G.I. (Eds.) Applied System Simulation: 
Methodologies and Applications. Springer, Norwell, MA, 2003. 

 
Papadimitriou, G.I., Sadoun, B. and Papazoglou, C. (2003) Fundamentals 

of Systems Simulation.  in: Obaidat, M.S. and Papadimitriou, G.I. 
(eds.) Applied System Simulation: Methodologies and Applications. 

Springer, Norwell, MA, 2003. 
 

 Law, A.M. (1999) Simulation, Modeling and Analysis. McGraw Hill Inc., 

New York, pp. 187-213. 
 

Vincent, J-M.  and Legrand, A. (2015). Performance measurements of 
computer systems: Tools and analysis. Available here  

 
Boudec, J-Y. (2017) Performance Evaluation of Computer and 

Communication Systems. Available here 
 

Memory Operations. Available: Memory Operations. Available here  
 

Presentation Schedule 
The Presentation Schedule included in your course materials gives you the 

important dates for the completion of tutor marked assignments and 
attending tutorials. Remember, you are required to submit all your 

assignments by the due date. You should guard against lagging behind in 
your work. 

 

Assessment 
 
Table 3 presents the mode you will be assessed. 

 
Table 3: Assessment 

S/N Method of Assessment Score (%) 

1 Portfolios 10 

2 Mini Projects with presentation 20 

3 Laboratory Practical 20 

4 Assignments 10 

5 Final Examination 40 

Total 100 

 

http://mescal.imag.fr/membres/arnaud.legrand/teaching/2015/M2R_EP_measurements.pdf
https://www.pdfdrive.com/performance-evaluation-of-computer-and-communication-systems-e43261685.html
http://www.c-jump.com/CIS77/CPU/VonNeumann/V77_0050_memory_operations.htm


iv 
 

Portfolio 
 

A portfolio has been created for you tagged “My Portfolio”. With the use 
of Microsoft Word, state the knowledge you gained in every Module and in 

not more than three sentences explain how you were able to apply the 
knowledge to solve problems or challenges in your context or how you 

intend to apply the knowledge. Use this Table format: 
 

Application of Knowledge Gained  
Module  Topic Knowledge Gained Application of Knowledge Gained 

    

    

    

    

 

You may be required to present your portfolio to a constituted panel.  
 

Mini Projects with presentation 
 
You are to work on the project according to specification. You may be 

required to defend your project. You will receive feedback on your project 
defence or after scoring. This project is different from your thesis. 

 

Laboratory Practical 
 
The laboratory practical may be virtual or face-to-face or both depending 

on the nature of the activity. You will receive further guidance from your 
facilitator. 

 

 

Assignments 
 

Take the assignment and click on the submission button to submit. The 
assignment will be scored, and you will receive a feedback. 

 

Examination 
 
Finally, the examination will help to test the cognitive domain. The test 

items will be mostly application, and evaluation test items that will lead to 
creation of new knowledge/idea. 

 

How to get the Most from the Course 
 
To get the most in this course, you:  



v 
 

 

 Need a personal laptop. The use of mobile phone only may not give 
you the desirable environment to work. 

 Need regular and stable internet. 
 Need to install the recommended software. 

 Must work through the course step by step starting with the 
programme orientation. 

 Must not plagiarise or impersonate. These are serious offences that 
could terminate your studentship. Plagiarism check will be used to 

run all your submissions. 
 Must do all the assessments following given instructions. 

 Must create time daily to attend to your study. 
 

Facilitation 
 

There will be two forms of facilitation – synchronous and asynchronous.  
The synchronous will be held through video conferencing according to 

weekly schedule. During the synchronous facilitation: 
 

 There will be two hours of online real time contact per week making 
a total of 26 hours for thirteen weeks of study time.  

 At the end of each video conferencing, the video will be uploaded 
for view at your pace. 

 You are to read the course material and do other assignments as 

may be given before video conferencing time. 
 The facilitator will concentrate on main themes. 

 The facilitator will take you through the course guide in the first 
lecture at the start date of facilitation  

 
 

 
For the asynchronous facilitation, your facilitator will: 

 Present the theme for the week. 
 Direct and summarise forum discussions. 

 Coordinate activities in the platform. 
 Score and grade activities when need be. 

 Support you to learn. In this regard personal mails may be sent.  
 Send you videos and audio lectures, and podcasts if need be. 

 

Read all the comments and notes of your facilitator especially on your 
assignments, participate in forum discussions. This will give you 

opportunity to socialise with others in the course and build your skill for 
teamwork. You can raise any challenge encountered during your study. To 

gain the maximum benefit from course facilitation, prepare a list of 
questions before the synchronous session. You will learn a lot from 

participating actively in the discussions.  
 



vi 
 

Finally, respond to the questionnaire. This will help ACETEL to know your 

areas of challenges and how to improve on them for the review of the 
course materials and lectures.  

 

Learner Support 
 

You will receive the following support: 
 

 Technical Support:  There will be contact number(s), email address 

and chatbot on the Learning Management System where you can 
chat or send message to get assistance and guidance any time 

during the course.  
 

 24/7 communication:  You can send personal mail to your facilitator 
and the centre at any time of the day.  You will receive answer to 

you mails within 24 hours.  There is also opportunity for personal or 
group chats at any time of the day with those that are online. 

 
 You will receive guidance and feedback on your assessments, 

academic progress, and receive help to resolve challenges facing 
your stuides.   

 
 

 

 
 



1 
 

Course Information   
 

Course Code:    CST809 
Course Title:    Security Architecture and Design 

Credit Unit:    2 
Course Status:    Elective 

Course Blub:  This course discusses the  fundamental 
components of security architecture. Topics 

treated include Components Design; 

Principles of Secure Component Design; 
Component Identification; Security Design 

Principle; Principle of Secure Design; 
Principle of Software Security, Design 

Principle for Protection Mechanism; Trusted 
Computing Base and Protection Mechanism; 

Formal Security Models and Evaluation 
Criteria; Project on Modeling Secure 

System. 
 

Semester:    First 
Course Duration:   13 

Required Hours for Study: 65 
   

 

Course Team 
Course Developer:    ACETEL 

Course Writer:    Dr. Abayomi Jegede and Dr. Ahmed Aliyu 
Content Editor:    Dr. Ismaila Idris 

Instructional Designers:  Inegbedion Juliet O. (Ph.D) & Dr. Lukman 
Bello 

Learning Technologists:  Mr. Awe Olaniyan Joseph 

 
 

 
 
 

 
 

 
 

 
 

 
 

 



2 
 

Module 1: Fundamental Components of 

Design Architecture 

 

Module Introduction  
 

This module presents the basics of architectural design of computer 
systems. The module explores the traditional and modern models of 

computer architecture alongside their structures, features, capabilities 

and limitations. It also explores technological advances in the areas of 
pipelining, caching, memory design and microprocessors and their impact 

on the development of improved architectures for modern computer 
systems. Finally, the module discusses the concept of performance 

measurement, its objectives and characteristics. 
 

Unit 1:   Architecture Development and Style 
Unit 2:   Technological Development 

Unit 3:   Performance Measure 
  

 

Unit 1: Architecture Development and Style  
 

Contents 
1.0 Introduction 

2.0 Intended Learning Outcomes (ILOs) 
3.0 Main Content 

 3.1 Internal Structure of a Computer System 
 3.2 An Overview of Computer Architecture 

 3.3 Traditional Architecture Styles 

  3.3.1 Von Neuman Model 
                 3.3.2 Modified Neuman Model 

           3.4 Modern Architecture Styles 
  3.4.1 Complex Instruction Set Computer 

  3.4.2 Reduced Instruction Set Computer 
  3.4.3 Comparison between CISC and RISC 

4.0 Self-Assessment Exercise(s) 
5.0 Conclusion 

6.0 Summary 
7.0 References/Further Reading 

 
 

 
 



3 
 

  1.0  Introduction 
 

In this unit, you will learn acquire knowledge and skills to distinguish 
between different architecture styles and select which architecture is most 

suitable for a particular application. To achieve this, you will learn about 
the various approaches to computer architecture design, their 

characteristics, advantages and disadvantages.  
  

 2.0  Intended Learning Outcomes (ILOs)  
 
By the end of this unit, you will be able to: 

 
 use different architectures and style in project development. 

 select the appropriate computer architecture for different 
applications. 

 

  3.0  Main Content  
 

 3.1 Internal Structure of the Computer  
 

Have you ever considered the consequences of building a skyscraper 
consisting of several floors and facilities which are linked together and are 

expected to function as a unit without having an architectural design for 
the project? Can you imagine the chaos and frustration that the workers 

will encounter? What about the time, energy and money that the project 
team will expend trying to figure things out? How about the high chances 

that that the project will eventually fail? 
 

A computer is an electronic machine that manipulates binary coded data 
and instructions (or program). A computer is made up of two main parts, 

namely memory and central processing unit (CPU). A computer uses the 
memory to store data and instructions which processes. The central 

processing unit (usually referred to as the brain or heart of the computer) 
controls all processing activities of the computer system.  Communication 

between the CPU and other components of the computer takes place via a 

data path known as the bus. The CPU performs the tasks of fetching, 
decoding and execution of program instructions on the correct data. The 

CPU consists of three parts: registers, arithmetic and logic unit (ALU and 
control unit. A register is a hardware device that stores a wide variety of 

data such as addresses, program counters, or data required for program 
execution. Registers are usually located on the processor to provide a 

quick access to stored data. The ALU performs arithmetic operations 



4 
 

(such as addition, subtraction and multiplication) and logic operations 

(comparisons). The control unit monitors the execution of al instructions 
and transfer of all information. The control unit retrieves instructions from 

memory, decodes the instructions, places data in the appropriate location 
and provides the ALU with signals which indicate the operations to carry 

out. 
 

How is the internal structure of the computer designed? 
Is the design of internal structure of all computers based on the same or 

different styles?  
  

3.2   An Overview of Computer Architecture 
 
Computer architecture is a branch of computer engineering which focuses 

of the development of computer systems or platforms based on widely 

accepted software and hardware technology standards. (Wang and 
Ledley, 2013). Computer architecture focuses on the design of computer 

system and compatible technologies.  
 

There are two distinct architectural styles used for the development of 
computer systems. These include the traditional architecture and modern 

architectural styles. Computer systems developed using the traditional 
style were based on the Von Neumann model and its different variants. 

The concept of instruction set is the foundation of modern architecture 
styles. This forms the basis for two common types of architectures, 

namely Complex Instruction Set Computer (CISC) and Reduced 
Instruction Set Computer (RISC). 

 

3.3   Traditional Architecture Styles 
 

Traditional approaches use the Von Neumann model and its different 

variants to develop computer systems. 
 

3.3.1   Von Neumann Architecture 
The design of modern computer systems is based on                                 

Von Neumann architecture. This architecture, which consists of CPU, 
memory, input/output (I/O) unit and storage, performs all processing 

activities under the control of a stored program. These components are 

connected via a single bus. The computer performs all its operations as 
directed by a stored program. The CPU is made up of the control unit 

(CU) and arithmetical logical unit (Von Neumann, 1945). Most modern 
computers are based on the Neumann model, using a single bus to 

connect control, data and address circuits. Figure 1.1 illustrates the 
Neumann model (Wang and Ledley, 2003).  

 



5 
 

 
 

Fig. 1.1:  Von Neumann model 
 

 
A system bus modification of the original Neumann architecture is 

presented in Figure 1.2 (Wang and Ledley, 2003).  
 

 
 

Fig. 1.2:  System bus modification of Von Neumann Model 
 

The modified model relies on the concept of direct memory access (DMA). 
DMA allows direct communication between the memory and I/O. This 

facilitates direct communication and data exchange between the memory 
and I/O devices without the involvement of the CPU. 

 
The Von Neumann model does not provide a secure architecture because 

the CPUs, memory, I/O, auxiliary storage, and network interface are 

connected to a single bus consisting of the address bus, data bus and 
control bus. An intruder who breaks into the system can easily gain 

access to the system bus and take control of the computer system and its 
resources. The attacker can sniff information being transmitted among 

the various components of the computer system via the bus. 
 

3.3.1   Modified Von Neumann Architecture 
The original Neumann architecture focused primarily on the computer as a 
standalone system, with all the hardware, software, data and other 

resources resident on a single machine. The model did not envisage the 
concept of computer networking which allows a set of computers and 

other devices to be connected together for the purpose of sharing 
resources. The approach did not foresee the exchange of data and 



6 
 

information via networks and Internet, which is crucial to modern 

information processing. This limitation necessitated the need for the 
modification of the generic architecture to include the idea of a network 

interface. The network interface provides a means of connecting multiple 
computers and devices together. It also facilitates the exchange of 

information between the interconnected computers. Figure 1.3 illustrates 
a modified Von Neumann architecture, whereby a network interface (unit) 

is added to the system bus (Wang and Ledley, 2003) This allows the I/O 
unit to handle only input and output devices such as keyboard, mouse 

and printer.  
 

 
 

Fig. 1.3: Modified Von Neumann model with network interface 

 
Modified Von Neumann model addressed security concerns by using a 

separate system bus to demarcate the network unit from other 

components of the computer system. A computer user must issue an 
explicit command for the bus controller to allow the two system buses to 

exchange data. In this approach, the integrity of communications is 
provided by a secure micro-operating system, which runs on a 

microprocessor and resides in a special location called the “red zone‟. The 
booting involves the loading of  a firmware image to the microprocessor 

memory during the booting process. A special purpose process monitors 
the system and resets it whenever it reaches a preset threshold. Memory 

protection and virtualization techniques are also used to enhance runtime 
security and protect against code injection. 

 
Is there any difference in the architectural designs of first generation 

computers such as ENIAC and EDVAC and the designs of modern 
desktops and laptops?  

 

What are the main architectural styles used in modern computers?  Do 
they have similarities and differences? 

 
 

 
 

 



7 
 

3.4   Modern Architecture Styles 
 

The concept of instruction set forms the basis of modern architecture 
styles. Typical examples of modern architectures are Complex Instruction 

Set Computer (CISC) and Reduced Instruction Set Computer (RISC).  
 

3.4.1   Complex Instruction Set Computer 
A compiler translates programs containing complex mathematical 

functions and complex subroutines into long sequences of machine 

language instructions. This makes compiler development a challenging 
and time consuming. The goal of CISC was to simplify the development of 

compilers which can handle complex instructions. CISC processors are 
designed mainly to provide more complex instruction set. CISC-based 

processors simplify programming by matching a machine instruction to 
high-level language statements. Figure 1.4 illustrates the CISC 

architecture.  
 

 
 

Fig. 1.4: Schematic diagram for CISC  
 

CISC processors such as x86 Intel architectures have a large number of 
variable length instructions with complex layouts. The CISC architecture 

comprises of complex instruction set, whereby the execution of a single 

instruction can trigger the performance of multiple operations. For 
example, it is possible to perform a loop operation using a single 

assembly language instruction. The instructions used to manipulate 
register operands requires only two bytes while the manipulation of two 

memory addresses may require five bytes. This makes it imperative for 



8 
 

CISC to support variable length instructions and use variable clock cycles 

to execute the instructions. Many systems based of CISC architecture 
perform input and output operations using the memory system instead of 

a register file. 
 

CISC computers store both data and instructions in the same cache 
memory, and use the same path for both instructions and data. The 

processors use a microprogram (a sequence of microinstructions) to 
generated control signals for executing a variety of memory resident 

instructions. The sequential execution of microinstruction may lead to a 
significant reduction in the speed of instruction execution. 

 
Advantages of CISC Architecture 

 
 Provides easy and cost effective implementation of 

microprogramming, instead of using expensive hard wired control 

unit. 
 

 Uses a general-purpose hardware to execute instructions such that 
new instructions can be incorporated into the chip without 

modifying structure of the instruction set. 
 

 Uses a fewer instructions to achiee a given task because of its 
support for efficient use of main memory. 

 
 Facilitates simple implementation of the compiler by providing 

microprogram instruction sets that match the high-level 
programming language constructs. 

 
Disadvantages of CISC Architecture 

 

 Increasingly complex chip hardware and instruction set as new 
versions of CISC processors incorporates previous generation 

processors 
.  

 Reduced overall performance due varying clock times used by 
different instructions. 

 
 Necessitates continuous reprogramming of on-chip hardware. 

 
 Many functions performed by CISC architecture require complex 

hardware and on-chip software. 
 

Have the limitations/problems associate with CISC been addressed? Do 
the new architectural style(s) offer any significant improvement?  

 

 



9 
 

3.4.2   Reduced Instruction Set Computer 
The reduced instruction set computer (RISC) architecture uses simplified 
instruction set to provide an overall reduction in the time required for 

program execution. The instruction set of RISC processors are small in 
size and highly optimal for the execution of operations. Each of these 

instructions is designed to perform one operation. RISC architectures 
carry out only register to register operations. This implies that memory 

resident data cannot be used as operands.  The instructions are all of the 

same length and have only a few different formats.  
 

Figure 1.5 illustrates the structure of RISC architecture. 
 

 
 

            Fig. 1.5: Schematic diagram for RISC 

 
The use of fewer and simplified instructions increases the speed of 

execution compared. The processor uses pipelining to optimize of each 
instruction which allows the simultaneous implementation of tasks such as 

like fetch, decode and execute. This results in an overlap of the execution 
cycles (fetch, decode and execute) of one or more instructions. This 

enables the processor to execute more instructions within a shorter period 

of time. RISC processors optimizes the usage of multiple registers usage 
to avoid frequent interactions with the memory or to reduce access time. 

This approach ensures that frequently used operands are placed in 
storage locations that can be easily accessed by the processor. The chip 

of most RISC based systems contains large memory cache that provides 
instructions with fast access to the memory. 

 



10 
 

Almost all new instruction sets for any architecture since 1982 have either 

been CISC or a hybrid of CISC and RISC. These systems use one clock 
cycle to execute most instructions, which makes it necessary to replace 

microprogrammed control by hardwired control in order to support faster 
execution of instructions. A machine cycle refers to the amount of time 

required to retrieve two operands from registers, execute ALU operation 
and store the result in a register. Generally, the speed of execution of 

one-cycle instructions is higher than that of microinstructions 
used by the CISC processor. The use fewer instructions in RISC 

processors simplifies the design of the control unit. 
 

The following are the main features of RISC architecture: 
 

 Fewer and con6strained set of instructions. 
 Uses fewer addressing modes. 

 The instructions have simple and uniform format and are executed 

in one cycle. 
 Reduced external memory access time due to the availability of 

larger number of registers. 
 Only load and store instructions are allowed access to the memory. 

 Used hard-wired control instead of micro programmed control. 
 The architecture provides support for pipelining. 

 
Power architecture, Alpha, PA-RISC, PIC, AVR, ARM are typical examples 

of RISC processors. 
 

Advantages of RISC Architecture 
 

 Its simplified instruction set provides improved performance of two 
to four higher times than that of CISC processors. 

 Reduced instruction set enables RISC to use less chip space. This 

enables designers to use the same chip to implement additional 
functions such as floating point arithmetic units or memory 

management. 
 The architecture offers reduced cost of each chip because it uses 

small sized chips which allows the integration of more components 
on a single silicon panel. 

 Simple architecture makes the time required to design RISC 
processors lower than that for CISC processors. 

 RISC processors use many registers to support execution of 
instructions at a rate faster than CISC processors. 

 
 

 
 

 

 



11 
 

Disadvantages of RISC Architecture 

 
 The nature of program being executed determines the performance 

of a RISC processor. The processor needs to wait for the output of 
the current instruction result before executing the next instruction. 

This occurs in situations where a compiler performs poor scheduling 
of instruction execution. 

 

3.4.3   Comparison Between CISC and RISC 
 

Table 1 presents a comparison between CISC and RISC architectures. 
 

Table 1:   CISC vs RISC 

CISC RISC 

Has a large number of variable-

length instructions 

Has a small set of fixed-length 

instructions 

Uses more addressing modes 

(between 16 and 24) 

Uses fewer addressing modes (3 to 

5) 

Provides hardware support for 
complex addressing modes 

Uses software to synthesize 
complex addressing modes 

Uses fewer (8 to 24) general-
purpose registers and a single 

cache for instructions and data. 

Has a large number of general-
purpose registers, (between 32 and 

192) with split data cache and 
instruction cache. 

Generic CISC processors use micro-

coded control memory (modern 
CISC processor are based on 

hardwired control.) 

The processor is based on a 

hardwired control and does not use 
control memory. 

Uses complex instructions which are 

executed in multiple cycles. 

Consists of simple, single cycle 

instructions. 

Minimal or no support for pipelining. Full support for pipelining 

 The microprogram determines the 

degree of complexity of operation 

The complexity of instruction 

execution depends on the compiler 

 
You should consider the following factors before taking a decision on an 

appropriate architecture for the new computer installation. 
 

i. The number and format of instructions in the instruction set. That 
is, whether the instruction set consists of large numbers of variable 

length instructions or small number of fixed length instructions. 
 

ii. The choice between fewer general-purpose registers with a single 
cache for instructions and data, or large number of general-purpose 

registers and with split data cache and instruction cache. 
 

iii. The number of addressing modes. 
 



12 
 

iv. The choice between hardware support for complex addressing 

modes and the use of software to synthesize complex addressing 
modes. 

 
v. The choice between a processor controlled by a micro-coded control 

memory and that which relies on a hardwired control and without 
control memory. 

 
vi. Whether the architecture will use complex instructions which are 

executed in multiple cycles or simple, single cycle instructions. 
 

vii. Whether or not the proposed architecture will provide support for 
pipelined instructions. 

 
viii. Whether the complexity of operation will lie with the microprogram 

or the compiler. 

 
 

Portfolios:   
Visit your computer hardware lab or a computer technician workshop 

nearby. Identify the components of different computers there. Also 
compare and contrast the internal structures and features of the 

motherboards of the computers there. Take some pictures of your 
observation and se d them to your tutor during online facilitation. 

 
Take a visit to your local phone repair workshop. Study the internal 

structure of the mobile phones and tablets under repair. Compare these 
to those of the computers. 

 
Lab Activity 

 

Implement the Von Neumann machine shown in Figure 1.1. 
 

Apparatus (1) Preassembled components Control unit, Memory and 
Arithmetic and logic unit. (2) External storage device (e.g. hard disk drive 

or flash memory). (3) I/O terminal consisting of keyboard and monitor, 
(4) Circuit board (5) Pieces of wires  

 
Method: Set up your I/O to terminal by connecting the keyboard and 

monitor. Plug the control unit and arithmetic and logic unit on the circuit 
board to make the CPU. Connect the memory unit and external storage 

using bidirectional cables as shown in the diagram. Finally, connect the 
I/O terminal to the CPU to make a complete computer system. Connect 

the setup to a power source and boot the system. Install basic system 
and application software and test the system. 

 

 



13 
 

 Discussion  
    

Which factors will you consider if you want to carry out a new computer 
installation? 

 

  4.0 Self-Assessment Exercise(s) 
 

1. Which of the following is an advantage of RISC architecture? 
 

A. Uses more addressing modes (typically 16 to 24) 
B. Better performance of up to two or four times than CISC 

processors because of simplified instruction set. 
C. Little or no support for pipelined instructions. 

D. Complexity lies in microprogram. 
 

                                 Answer: B 
 

2. The original Neumann architecture focused primarily on  

A. The computer as a standalone system, with all the hardware, 
software, data and other resources resident on a single 

machine. 
B. The number of addressing modes. 

C. Complexity. 
D. Addressing mode. 

 
Answer: A 

 
Lab Exercise  

 
1. Implement a system bus modification of the original Neumann 

architecture as shown in Figure 1.2 (10 marks) 
2. Implement the modified Von Neumann model with network 

interface shown in Figure 1.3. 

 

  5.0 Conclusion 
 

Knowledge of computer architecture provides computer scientists and 
engineers with an in-depth understanding of the internal structure of the 

computer. It also enables them to know the relevance of architectural 
styles to the design and functionality of computer systems. This 

knowledge will enable system analysts, programmers and managers to 
select the appropriate computer for different applications.  



14 
 

   6.0  Summary 
 

This unit presented an overview of the internal structure of the computer 

system. It also provided a coverage of the concept of computer 
architecture development and style. It discusses the common 

architectures found in traditional and modern computer systems as well 
as their characteristics, advantages and disadvantages. This will help 

prospective system analysts, programmers and system implementers to 
determine the suitable architecture for a specific application.  Unit 2 

focuses on technological developments and advances in computer 
architecture. 

 

  7.0 References/Further Reading 
 

Von Neumman, J. (1945). First Draft of a Report on the EDVAC. Moore 

School of Electrical Engineering, University of Pennsylvania. 
 

Wang, S.P. & Ledley, R.S. (2013). Computer Architecture and Security: 
Fundamentals of Designing Secure Computer Systems. Available 

here 
 

What Is The Difference Between RISC and CISC Architecture? Available 
here 

 
Mano, M.M. (2014). Computer System Architecture. (3rd ed.). Available 

here 
 

Null, L. & Lobur, J. (2003).The Essentials of Computer Organization and 
Architecture. Sudbury, Massachusetts: Jones and Bartlett 

Publishers.  

  
 
  

https://www.pdfdrive.com/computer-architecture-and-security-fundamentals-of-designing-secure-computer-systems-e184601355.html
https://www.elprocus.com/difference-between-risc-and-cisc-architecture/
https://www.pdfdrive.com/computer-system-architecture-morris-mano-third-edition-e31004022.html


15 
 

Unit 2:  Technological Development 
 

Contents 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Content 
 3.1 Advances in Computer Architecture 

 3.2 Impact of Technological Development on Performance 

  3.2.1 Pipelining 
                 3.2.2 Caching 

        3.3 Advances in Memory Technology 
 3.4 Advances in Microprocessor 

         3.5 Programmable Solid State Storage 
4.0 Self-Assessment Exercise(s) 

5.0 Conclusion 
6.0 Summary 

7.0    References/Further Reading 
 

  1.0  Introduction 
 
You will learn from this unit, the technological developments of different 

components and features of the computer system. After studying this 
unit, you will acquire skills for identifying recent improvements in 

computer architecture; as well as designing and selecting appropriate 

machines for implementing innovative solutions to real life problems.  
 

 2.0  Intended Learning Outcomes (ILOs)  
 
By the end of this unit, you will be able to design and select suitable 

architecture for different real life problems. 
 

  3.0  Main Content  
 

3.1 Advances in Computer Architecture 
 

Can you compare cars manufacture in the 1960s with the ones which 
were produced recently? Have you also noticed the differences in different 

grades and specification of cars from the same manufacture? All the 
modifications and changes that have occurred over time are as a result of 

technological developments in the field of automobiles. 
 



16 
 

The design of a new computer is determined by how the machine is to be 

implemented and how it will be used (Hennessey and Jouppi, 1991). 
Continuous improvements in integrate circuit (IC) technology has played 

the most a vital role in the design modern computer architectures. The 
technological breakthroughs in Integrated Circuit (IC) also has a 

significant impact on the choice of implementation on the choice of 
implementation techniques for computer systems. We will explore 

technological developments of computer architecture in the areas of 
performance improvements, memory, multiprocessors and programmable 

solid state drive.  
 

Are you aware that modern computers are faster and can process large 
amounts of data compared to older generations of computer systems? 

What do you think makes this possible? 
 

3.2  Impact of Technological Development on 

Performance  
 

The two major developments that have improved the performance of 

computer systems are pipelining and caching. The use of pipelining 
and cache has led to significant improvements in the 

performance of computer systems. Both techniques use more 
devices to achieve a higher throughput. These have led to 

developments of machines with improved processing capabilities, high 

speed of execution and low response time. These techniques were 
predominantly used in mainframes and supercomputers. Improvements in 

IC technology made their applications feasible in microprocessor-based 
computer systems. 

  

 

3.2.1  Pipelining 
Pipelining uses a uses an approach known as instruction-level parallelism 
to increase the performance of machines. (Hennessey and Jouppi, 1991). 

Instruction-level parallelism provides for overlapping; that is, the 
execution of a sequence of independent instructions simultaneously. The 

concept of pipelining is illustrated in the Figure 1.6 below.  
 

Ideally, a pipelined machine should be able to complete the execution of 

an instruction within a clock cycle. This requires an efficient 
implementation of instruction level parallelism to ensure that the pipeline 

is full of independent instructions. 
 

 



17 
 

 
Fig. 1.6: Concept of Pipelining (studytonight.com) 

 

An enhanced technique known as super-pipelining supports higher 
performance improvements than the conventional pipelining technology. 

A similar approach called superscalar places more than one instruction per 
clock into the pipeline.  

 

3.2.2  Caching 
The CPU uses a hardware cache to reduce the average cost (time or 

energy) to access data from the main memory. A cache is a smaller, 
faster processor-based memory used to store frequently used addresses 

and data. The purpose of cache memory is to store instructions and data 
that are currently used by the processor in a location that is easily 

accessible to the CPU. The concept of caching is depicted in the figure 
below. 

 

 
 

Fig. 1.7: Concept of caching (biovolttech.com) 
 

Figure 1.7 above shows how the processor first checks the cache to see if 
the required data or instruction is available there. Usually, the instructions 

or data are placed in the cache during a previous memory fetch. The 
processor reads the data or instructions from the cache instead of 

performing more time-consuming operations to retrieve the data or 

instruction from the memory or other data storage devices. Caching is 
used to speed up computer operations and processing. The reduction in 

https://www.google.com/search?q=pipelining&sxsrf=ALeKk01O8-YMqqBb2dz1111zVZ-XGK5JTg:1583446103835&source=lnms&tbm=isch&sa=X&ved=2ahUKEwin3Ki0rIToAhUoURUIHcy4BSEQ_AUoAXoECBUQAw&biw=1366&bih=657#imgrc=ybrzenmQMaBz8M
https://biovolttech.com/2018/05/10/what-is-cache-memoryandroid-and-ios/


18 
 

latency between the processor and memory speeds results in significant 

improvements in the performance of computer systems. 
 

Do you observe that the internal memory (RAM/ROM) available in older 
laptops are lower than the ones in modern laptops?  

 
Have you also observed that there is relative decrease in prices of 

computer systems despite the increase in memory capacity?  
 

3.3 Advances in Memory Technology  
 
Advances in integration technology has led to a progressive decrease in 

the cost of computer memory. This had had several important effects on 
the design of computer. It has also minimized the emphasis placed of the 

importance of conserving memory. Nowadays, designers reduce design 

complexity by increasing processor speeds at the expense of memory 
costs.  For example, RISC architectures have lower design complexity, but 

higher memory requirements and processor speeds. 
 

Improvements in integrated circuit technology also led to breakthroughs 
in the dynamic random memory access (DRAM) and static random 

memory access (SRAM). DRAM typically contains data or program used by 
a computer processor. It uses a memory cell consisting of a tiny 

capacitor and transistor to store each bit of data. The capacitor can be in 
either of two states: charged (represented as 1) or discharged 

(represented as 0). The data on the chip may be lost if the capacitors lose 
their electric charge. Hence, there is a need for periodic rewriting of data 

in the capacitors using an external memory refresh circuit. DRAM is made 
of multiple individual IC chips, consisting of a large array of storage 

elements which are small sub-circuits of 1 transistor each. The sub-

circuits can store billions of binary bits, which can be accessed randomly. 
DRAM is a commonly used in servers, workstations and personal 

computers (PCs).  
 

Static RAM or SRAM) is a semiconductor memory that uses flip-flop (bi-
stable latching circuitry) to store each bit. SRAM is volatile and requires 

continuous power supply to retain data bits in its memory. However, 
SRAM does not need periodic refreshing unlike DRAM. Static RAM provides 

faster access to data and is more expensive than DRAM. It is used for 
cache memory and on a video card as part of the random access memory 

digital-to-analog converter. 
 

Modern computers are faster, lighter and more powerful than their older 
generation counterparts. What do you think is responsible for this? 

 

 
 



19 
 

3.4 Advances in Microprocessor 
 

A multiprocessor is a component that executes instructions and carries 
out other tasks involved in computer processing. It is usually built on a 

silicon microchip and has more advanced architectural design than a 
conventional CPU. A pictorial representation of a microprocessor can be 

seen in Figure 1.8 below. 
 

 

 
 

Fig. 1.8: Microprocessor 
 

A microprocessor controls all the functions of the CPU of a computer or 
other digital device. The microprocessor is built on a single integrated 

circuit and functions as an artificial brain of the CPU.  

 
The following are some of the functions of the microprocessor: 

 
 It uses timing signals to control all other parts of the computer. 

 It transfers data between memory and I/O devices. 
 It fetches data and instructions from memory. 

 It decodes instruction. 
 It performs arithmetical and logical operations. 

 It executes programs stored in memory. 
 It performs communication among I/O devices 

 
Advancements in microprocessor technology produced high performance 

computers at reduced costs. Microprocessor-based computers currently 
have performance rates of millions of instructions per second. 

Are you aware that the hard disk of windows system is not as efficient 

and reliable as that of Mac computers? 
 

Do you know that it is possible to program to control the way an external 
memory function?  



20 
 

3.5 Programmable Solid State Storage 
 

A solid state drive (SSD), sometimes referred to as flash drives or solid-
state disks, is a storage media which uses solid-state flash memory 

consisting of a flash controller and NAND flash memory chips to store data 
permanently. An SSD uses microchip to store information, unlike a hard 

disk drive which uses magnetic technology to store information. The SSD 
controller is optimized to perform high performance sequential and 

random data access.  
 

Modern SSDs contain several low frequency CPUs running firmware that 
perform low level functions such as error-correction, wear levelling, 

read/write caching and encryption. Developers can use some newly 
discovered interfaces to program SSDs. These interfaces allow application 

developers to make the SSD to implement functions which would normally 

have been dedicated to the applications. This leads to efficient bandwidth 
utilization, reduced access latency and lower power consumption because 

of the elimination of data transfer between the computer and the SSD. 
This also the SSD to implement functions such as high performance data 

storage, data intensive computing and kernel bypass for user applications 
and semantic extensions. 

 
Lab Activity 

 
Use bidirectional buses to connect CPU, Cache and Memory to obtain the 

setup shown in Figure 1.7. Connect an I/O unit to the setup and simulate 
word transfer and block transfer modes of caching. 

 
 

 Discussion 
 

A multiprocessor is a component that executes instructions and carries 
out other tasks involved in computer processing. What is your own 

opinion? 
 

  4.0 Self-Assessment Exercise(s) 
 
1. The two major developments that have improved the performance 

of computer systems are: 
A. Fetching and Decoding 

B. Executing and Storing 
C. Caching and Storing 

D. Pipelining and Caching 



21 
 

Answer: D 

 
2. The following are some of the functions of microprocessor except 

A. Controlling all other parts of the machine and sending timing 
signals. 

B. Transferring data between memory and I/O devices. 
C. Fetching data and instructions from memory. 

D. Pipelining the data 
 

Answer: D 
 

Assignment 1 
Do you think pipelining and caching have any significant contribution to 

performance in modern computer systems? Provide justifications for your 
answer. 

 

Mini Project 
Write a seminar paper on the effects of advances in microprocessor 

technology on the size, cost and performance of your modern computers 
and mobile phones.  

 

  5.0 Conclusion 
 

Technological advancements in performance, memory, microprocessors 
and solid-state storage have led to the development of high performance, 

lightweight and more affordable computer systems. These systems have 
large memory capacity, low power consumption and the ability to handle 

complex processing tasks.  
 

   6.0  Summary 
 

This unit covered technological developments in the field of computer 
architecture. It explored advances in performance, memory technology, 

microprocessor and solid-state storage, and their impacts on the 

developments of modern computer systems. The next unit discusses 
relevance, objectives and techniques for evaluating the performance of 

computer systems. 
 

 
 

 
 



22 
 

  7.0 References/Further Reading 
 

Fernandez, E.B. (2013). Security Patterns in Practice. United Kingdom: 
Wiley and Sons Ltd.  

 
Hennessey, J.L & Jouppi, N.P. (1991). “Computer architecture and 

technology – An evolving interaction.” Computer, pp. 18-29, 
September 1991. Available here 

 
Mano, M.M. (2014). Computer System Architecture. (3rd ed.).  Available 

here 
 

Null, L. & Lobur, J. (2003). The Essentials of Computer Organization and 
Architecture. Sudbury, Massachusetts: Jones and Bartlett 

Publishers. Available here  

 
Wang, S.P. & Ledley, R.S. (2003). Computer Architecture and Security: 

Fundamentals of Designing Secure Computer Systems. Available 
here 

 
  

http://cva.stanford.edu/classes/cs99s/papers/hennessy-jouppi-computer-technology-and-architecture.pdf
https://www.pdfdrive.com/computer-system-architecture-morris-mano-third-edition-e31004022.html
https://junyours.files.wordpress.com/2012/07/computer-organization-and-architecture.pdf
https://www.pdfdrive.com/computer-architecture-and-security-fundamentals-of-designing-secure-computer-systems-e184601355.html


23 
 

Unit 3:  Performance Measure 
 

Contents 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Content 
 3.1 What is Computer Performance Measurement? 

                 3.1.1 Objectives of Performance Measure 

 3.2 Metrics 
3.2.1 Desirable Characteristics of Computer Performance 

Metrics 
3.3 Measuring Computer Speed and Processing Power 

4.0 Self-Assessment Exercise(s) 
5.0 Conclusion 

6.0    Summary 
7.0     References/Further Reading 

 

  1.0  Introduction 
 

In this unit, you will acquire skills for evaluating the performance of 
different computer architectures. To achieve this, you will learn about the 

concept of performance metric as well as the different techniques and 
parameters for evaluating the performance of computer systems 

 

 2.0  Intended Learning Outcomes (ILOs) 
  
By the end of this, you will be able to demonstrate the use of 

performance measure in providing solutions to problem-based scenarios.  
  

  3.0  Main Content  
 

3.1 What is Computer Performance Measure? 
 

How do you determine whether a computer system is efficient, reliable 
and suitable for your application? What are the yardsticks you would 

consider when you want to choose an appropriate architecture for real-
time and delay sensitive applications?  

 
Computer performance measurement is the evaluation of the amount of 

work carried out by a computer system. The main goal of performance 
measurement is to use quantitative techniques to predict the behavior of 



24 
 

a computer system (Obaidat and Bouderiga, 2010). This depends on 

parameters such as throughput, response time and execution time of the 
computer system. Throughput is measured in terms of the amount of data 

processed or transferred by a computer system over a period of time. The 
amount of data processed or transferred depends on factors such as the 

speed of the CPU, memory capacity, operating systems performance and 
the tool used for the measurement. Response time refers to the total time 

a computer takes to respond to a request for service such as memory 
read/write, disk I/O, database query or access to a web page. The 

execution time is a measure of how long it takes the CPU to execute a 
program instruction. This includes the actual amount of time taken to 

process the instruction as well as the time for carrying out necessary 
system services required for the execution of the instruction. 

 
The three major techniques used for evaluating performance of computer 

systems are (a) analytical modeling, (b) simulation and (c) measurement 

and testing. The arrangement of these methods is based on increasing 
order of cost and accuracy. Analytical models are the cheapest to use and 

are the least accurate. Simulations are more flexible, accurate and 
reliable, but it takes a lot of time to derive the model, design and code 

the simulator and verify and validate the model. Measurement is the most 
accurate and reliable, but it consumes a greatest amount of time and 

effort.   
 

3.1.1 Objectives of Computer Performance Measurement 
 

The major objectives of performance evaluation are as follows (Obaidat 
and Papadimitriou, 2003; Papadimitriou et al, 2003; Jain 1991): 

 
 To compare alternative system designs: This is a comparison of the 

performance of different hardware or software systems or 

component designs and choosing the best alternative for a specific 
application. This is used for a quantitative evaluation and 

determination of the best configuration for the actual operating 
environment. 

 Procurement: Performance evaluation assists in determining the 
system that is most cost-effective for a specific application.  

 Capacity Planning: Data centre administrators and managers use 
performance evaluation to ensure that adequate resources are 

available to meet system objectives without compromising 
performance goals.  

 System Tuning: This is concerned with finding a set of parameter 
values such as disk and network buffer sizes that will produce 

optimal system performance. 
 Performance Debugging: The goal here is to determine why a 

system or an application fails or meet performance expectations. 



25 
 

Performance analysis helps to identify the major cause of the 

problem so that the system administrator can remedy the situation.  
 Set expectation: Performance measurement enables system users 

to set appropriate expectations of the minimum performance 
requirements that should be met by the system.   

 Recognize relative performance: The goal is to achieve a 
quantitative evaluation of change in performance of a system 

relative to previous systems, customer expectations or competing 
systems. 

 
Which relevant characteristics of the computer would you measure to 

determine whether the computer has good performance or not?  
How would you ensure that a measured characteristic gives an unbiased 

result irrespective of the kind of computer involved or the operating 
environment?  

 

3.2  Metrics 
 
A metric is a criterion used to measure the performance of computer 

systems. Metrics usually have an underlying relationship with the 
accuracy, speed, availability and reliability of the operations or services 

carried out by the system. Performance analysts measure the following 
basic features of a computer system:  

 
i. the number of times an event occurs,  

ii. the amount of time it takes for an event to occur, and  
iii. the size of some parameter.  

 
The values obtained from such measurements can be used to derive the 

actual value that a performance analyst wishes to use to describe the 

system. The actual value is referred to as performance metric. 
 

Computer performance metrics are divided into the following main 
categories [Obaidat and Papadimitriou (2003); Papadimitriou et al, 2003]: 

 
 Higher better metrics (HB): The higher the value of the metric, the 

better is the performance of the system. Productivity is an example 
of HB metric. 

 
 Lower better metrics (LB): Metrics which have lower values indicate 

better performance than those with higher values. An example of LB 
metric is response time. 

 
 Nominal better metrics (NB): This requires that the value should not 

be too high or too low. It is desirable that metrics in this category 

have values between 0.5 and 0.75. A typical example of NB metric 
is utilization. 



26 
 

Availability and reliability are other measures of performance used by 

analysts. Availability is measured in terms of mean time to failure (MTTF) 
and mean time between failure (MTBF) [Obaidat and Papadimitriou 

(2003); Papadimitriou et al, 2003, Law, 1999].  MTTF is a measure of the 
duration a device or component is reasonably expected to function before 

a failure occurs. It is computed as the total hours of operation, divided by 
the total number of devices being tracked. MTBF is defined as the actual 

time between two successive failures. It is calculated as the sum 
of MTTF and mean time to repair (MTTR). That is, the total time it takes a 

device to experience failure and for that failure to be repaired. 
 

3.2.1  Desirable Characteristics of Computer 
Performance Metric  

The desirable characteristics of performance metrics include [Vincent, J-

M.  and Legrand, A. (2015):  

 
 Reliability: The performance metric should indicate that A has a 

better performance than B if a system A always performs better 
than a system B. 

 
 Repeatability: The repeated performance of the same experiment 

should produce the same value of the metric.  
 

 Consistency: This implies that different systems and different 
configurations of the same system have the same units of a metric 

and same precise definition for the metric.  
 

 Linearity: An improvement in the actual performance of the 
machine should result in a corresponding increase in the value of 

the metric.  

 
 Ease of measurement: A metric should be easy to measure to 

ensure that it is correctly determined and to encourage people to 
actually use it will actually use it.  

 
 Independence: A metric should be defined in such a way that is not 

in favour of any particular system.  
 

How would you measure the processing speed and power of the 
computer? 

 
What does a 1.8GHz value mean in a PC configuration? 

 
 

 

 



27 
 

3.3 Measuring Computer Speed and Processing 

Power 
 

Million instructions per second (MIPS) is a well-known (but outdated) 
parameter for measuring the speed and processing power of a computer. 

MIPS measures gives a rough estimate of the number of machine 
instructions that a computer can execute in one second. MIPS does not 

give an accurate measure of computer performance because different 
instructions require different amounts of time for execution. Complex 

instructions require more time, while simple instructions will execute 
within a shorter period of time.  

 
Moreover, there is no standard method for measuring MIPS. While the 

CPU measures MIPS only in terms of processor speed, real life 
applications consider other factors such as the speed of transfers between 

the processor and I/O devices. Thus, a machine with a high MIPS rating, 

may not outperform a low MIPS-rated counterpart even if they execute 
the same application. Despite these limitations, MIPS provides a rough 

idea of the speed of a computer. For example, an older computer such as 
IBM PC/XT has a rating of ¼ MIPS, while Pentium-based PCs are rated 

100 MIPS and above. 
 

Nowadays, a computer‟s processing speed is expressed in terms of the 
clock speed, measured in cycles per second.  One cycle/second equals to 

1 hertz. This implies that a processor which executes two thousand million 
(or two billion) cycles per second has a clock speed of 2 gigahertz (GHz). 

A CPU with high will execute instructions faster than a CPU with low i 
clock speed. 

 

 Discussion   
 

Based on your experience from this course, why do you think computer 

measurement is important? 
 

  4.0 Self-Assessment Exercise(s) 
 

1. Which of these best describe computer performance measurement? 
A. It is the evaluation of the amount of work carried out by a 

computer system. 
B. Systems or component designs and deciding the best 

alternative for a specific application.  
C. The execution time is defined as the amount of time taken by 

the CPU to execute a program instruction. 



28 
 

D. The basic features of a computer system that performance 

analysis. 
 

Answer: A 
 

2. MIPS stands for 
A. Mili-Instructions Per Seconds 

B. Million Instructions Per Second  
C. Message Instruction Per Second 

D. Million Instructions Per Seconds  
 

Answer: B 
 

  5.0 Conclusion 
 
Computer performance measurement enables computer architect and 

designers to evaluate the speed, accuracy, reliability and reliability of a 

proposed computer architecture and design. It also helps system 
implementers to assess the performance of different hardware or software 

systems or component designs and choose the best alternative for a 
specific application. 

 

   6.0  Summary 
 
In this unit, you have learnt the goal and objectives of performance 

measure. This unit also provided you with the knowledge of computer 
performance metric, its desirable characteristics and the criteria for 

choosing a suitable metric for evaluating computer architecture and 
design. The unit also introduced you to the parameters used to measure 

computer speed and processing power. 
 

  7.0 References/Further Reading 
   

http://polaris.imag.fr/arnaud.legrand/teaching/2013/EP_02_measuremen
ts.pdf 

 
https://www.researchgate.net/publication/325551949_Performance_Eval

uation_of_Computer_and_Communication_Systems 
 

 

http://polaris.imag.fr/arnaud.legrand/teaching/2013/EP_02_measurements.pdf
http://polaris.imag.fr/arnaud.legrand/teaching/2013/EP_02_measurements.pdf
https://www.researchgate.net/publication/325551949_Performance_Evaluation_of_Computer_and_Communication_Systems
https://www.researchgate.net/publication/325551949_Performance_Evaluation_of_Computer_and_Communication_Systems


29 
 

Obaidat, M.S. & Boudriga, N.A. (2010). Fundamentals of Performance 

Evaluation of Computer and Communication Systems. New Jersey: 
John Wiley & Sons, Inc. 

 
Saastamoinen J, Khan S, Tiensyrjä K & Taipale T (2011). “Multi-threading 

support for system-level performance simulation of multi-core 
architectures.” Proceedings of the 24th International Conference on 

Architecture of Computing Systems, Como, Italy, 169–177.  
 

Saastamoinen, J. & Kreku, J. (2011). “Workload model generation for 
system-level design exploration.” Proceedings of the Conference on 

Design and Architectures for Signal and Image Processing (DASIP), 
2011. 

 
Throughput Definition. Available here 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

http://www.info.org/throughput.html


30 
 

Module 2: Instructional Set 

Architecture and Design 

 
Module Introduction  
 

This module focuses on the architecture and design of instruction set for 
the computer. Topics covered in this module include memory location and 

operations, addressing modes and various types of computer instructions. 
 

Unit 1:   Memory Location and Operations 
Unit 2:   Addressing Modes 

Unit 3:   Instruction Types 
 

 

Unit 1:  Memory Location and Operations 
 
Contents 

1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Content 
 3.1 Computer Memory: Definition and Types 

  3.1.1 Primary Memory 

  3.1.2 Secondary Memory 
  3.1.3 Cache Memory 

 3.2 Memory Location and Address Space 
 3.3 Basic Memory Operations 

4.0 Self-Assessment Exercise(s) 
5.0 Conclusion 

6.0 Summary 
7.0 References/Further Reading 

 

  1.0  Introduction 
 

In this unit, you will learn the fundamentals of computer memory, 
address space and the interaction between the memory interacts and 

other components of the computer. After studying this unit, you will 
acquire skills for identifying, designing and selecting appropriate memory 

structure and device for implementing computer architecture. 

 
 

 



31 
 

 2.0  Intended Learning Outcomes (ILOs)  
 

By the end of this unit, you will be able to justify the use of memory 
location and operations in design. 

 

  3.0  Main Content  
 

3.1 Computer Memory: Definition and Types 
    
Where and how does the computer store data and instructions it 

processes? How do we keep the result of data processed by the computer 
permanently? 

  
A computer memory is a device used for temporary or permanent storage 

of information. Primary memory and secondary memory are the two basic 
types of computer memory.  

 

3.1.1 Primary Memory 
Primary memory contains data and instructions which are currently being 

processed by the computer. This makes it difficult for a computer to 
operate without a primary memory. Memory devices built using 

semiconductor or integrated circuits and are accessed by operating 
systems, software, and hardware. Primary memory may be volatile or 

non-volatile. A primary memory is said to be volatile if the data stored in 
it remains as long as the computer is connected to a power source. A 

volatile memory loses its data once the power supply to the computer 

system is switched off or interrupted. Random access memory (RAM) is 
an example of volatile primary memory. Non-volatile primary memory 

provides data permanence even in the event of power loss interruption. 
Data stored in a non-volatile primary emory such as read only memory is 

preserved even when the computer is disconnected from a power source. 
Read only memory (ROM) is a non-volatile memory which does n6ot lose 

its contents even when the computer is disconnected from a power 
source.    

 

3.1.2 Secondary Memory 
Secondary memory or auxiliary storage are non-volatile and preserves 

stored data even when there is power loss or interruption. Secondary 
memory such as the hard disk may be located internally within the 

computer system. Other examples of secondary storage such as USB 
memory sticks, CD, DVD and Blu-ray discs are usually external to the 

system. Secondary storage support large amount of data and enables 
permanent data storage.  



32 
 

 

Computer systems use three main types of secondary memory: 
 

i.  Solid state storage devices, such as USB memory sticks. 
ii. Optical storage devices, such as CD, DVD and Blu-ray discs. 

iii. Magnetic storage devices, such as hard disk drives. 
 

The main difference between primary and secondary memory is that 
primary memory is accessible to the CPU via the system bus, while access 

to secondary memory takes place via the input/output channels. 
 

The following table provides a comparison between primary and 
secondary memory. 

 
Table 2:  Primary Memory vs Secondary Memory 

 

3.1.3 Cache Memory 
A cache is a special type of memory used to store data ad programs 

currently being executed by the computer or those frequently used by the 
processor. A cache memory consists of registers which are located close 

to the processor. It provides faster access to data and instructions 
compared to main memory. The use of cache reduces the latency 

between processor and memory speeds. This implies a reduction in the 
amount of time the CPU spends waiting for data and instructions from the 

memory. 

 
Why do you think a town or city is divided into streets and each street 

assigned a name? Why do you think each house in your city is assigned 
an address?  

 
Which activities does the computer carry out to retrieve data and 

instructions in its memory during program execution? 
 

Parameter for 
comparison 

Primary memory Secondary memory 

Accessibility Directly accessible to 
the CPU 

Not directly accessible to 
the CPU 

Volatility Volatile Non-volatile 

Means of production Semiconductors Magnetic or optical 
materials 

Modes of access Via the system bus Via the I/O channels‟ 

Size Small Large 

Cost Less expensive More expensive 

Location Internally (on the 

processor board 

Externally (off the 

processor board or 
outside of the computer 



33 
 

3.2 Memory Location and Address Space 
 

A memory location is any space within the memory that is used to  
store data. Each location in the memory is referenced by an address, 

which acts as a pointer to that location. A memory address is a unique 
identifier which the CPU or a device uses to keep track of stored programs 

or data. Memory addresses are ordered and fixed-length sequences of 
digits which are usually represented and manipulated as unsigned 

integers. The size of each memory address is a machine word, which 
represents the amount of memory used by the CPU to store numbers in 

cache, registers or RAM. A mmory word may be 16 bits (2 bytes), 32 bits 
(4 bytes) or 64 bits (8 bytes) depending on the configuration of CPU. 

 
An address space is a range of valid memory addresses that a program or 

process can access (for example, 0 to 4GB on a 32-bit machine). This 

refers to the actual physical memory that is available to a program or 
process. Machines based on older hardware architectures had one single 

address space, shared by all programs and the operating system. This 
memory space is also the actual physical memory. Modern computers are 

byte-addressable. That is, each RAM cell can hold binary values up to the 
size of one byte. The computer segments data that are more than one 

byte into multiple bytes and stores them in a consecutive memory 
addresses. 

 

3.3 Basic Memory Operations 
 

Figure 2.1 illustrates the instruction execution cycle, which presents the 
details of the two major operations on memory. These operations are: 

 
 Fetch: Used to retrieve a value from a memory location referenced 

by a unique address. The format is fetch(address); the fetch 

keyword refers to the function that is to be executed, while the 
address is the argument. The operation produces an output without 

changing the value stored at that memory location. 
 

 Store: Places a new value into the memory cell specified by the 
address. Usually written as store(address, value ); the store 

designates a processor specific operation; while the two arguments 
(address and value) identify the actual value to be placed in the 

given address. 
 

Access to the memory may be sequential or random. Sequential access 
means the CPU locates stored data or programs in a predetermined, 

ordered sequence. Magnetic tapes use sequential access method. Random 
access, on the otherhand, allows the CPU to access data in any location 

directly without requiring that other locations be accessed first. Hard disk 

http://www.c-jump.com/CIS77/CPU/VonNeumann/V77_0050_memory_operations.htm


34 
 

and optical disks (such as CD, DVD or blue ray) are examples of random 

access memory devices. 
 

 
 

Figure 3.1 Instruction execution cycle 
 

See source link  
 

 Discussion   
Which of the considerations will determine your choice of primary and 
secondary storage when you are designing architecture or assembling a 

machine?  
 

  4.0 Self-Assessment Exercise(s) 
1.  A computer memory is any physical device used to store 

information _____________or __________ 
 

A. Temporarily or otherwise 
B.  Physically or spiritually 

C.  Temporarily or permanently 

D.   Permanently or physically. 
Answer: C 

 
 

http://www.c-jump.com/CIS77/CPU/VonNeumann/V77_0050_memory_operations.htm


35 
 

2. Secondary memory is also referred to as  

 
 Auxiliary storage or non-volatile. 

 Volatile storage 
 Compact storage 

 Hard disk 
 

Answer: A 
 

 

  5.0 Conclusion 
 

Data and programs must be stored in unique memory locations prior to 
processing by the CPU. The bus determines a fixed number of CPU 

memory addresses assigned based on the processing requirements of the 
CPU. The CPU then accesses and manipulates data in physical memory in 

individual segments. The allocation of memory addresses takes place 

during the boot process in order to assign physical addresses to data and 
instructions. 

 

   6.0  Summary 
 
In this unit, you have learnt about the structure of the computer memory 

and how the computer allocates memory addresses during program 
execution. The unit also introduced you the two modes of memory access 

and the basic operations which the computer performs on memory. In the 
next unit, you will learn how to use addressing modes to access operands 

in specified memory and register locations. 
 

  7.0 References/Further Reading 
  
 

https://www.wiley.com/en-us/Security+Patterns+in+Practice%3A+ 

Designing+Secure+Architectures+Using+Software+Patterns-p-
9781119998945 

 
Mano, M.M. (2014) Computer System Architecture. 3rd Ed.  Available here 

 
Hennessey, J.L & Jouppi, N.P. (1991). “Computer Architecture and 

Technology – An Evolving Interaction.”  Computer, pp. 18 -29, 
September 1991. Available here  

 

https://www.wiley.com/en-us/Security+Patterns+in+Practice%3A+%20Designing+Secure+Architectures+Using+Software+Patterns-p-9781119998945
https://www.wiley.com/en-us/Security+Patterns+in+Practice%3A+%20Designing+Secure+Architectures+Using+Software+Patterns-p-9781119998945
https://www.wiley.com/en-us/Security+Patterns+in+Practice%3A+%20Designing+Secure+Architectures+Using+Software+Patterns-p-9781119998945
https://www.pdfdrive.com/computer-system-architecture-morris-mano-third-edition-e31004022.html
http://cva.stanford.edu/classes/cs99s/papers/hennessy-jouppi-computer-technology-and-architecture.pdf


36 
 

Mano, M.M. (2014). Computer System Architecture. (3rd ed.).Available 

here 
 

Memory Operations. Available here 
 

Wang, S.P. & Ledley, R.S. (2003) Computer Architecture and Security: 
Fundamentals of Designing Secure Computer Systems. Available 

here 
 
  

https://www.pdfdrive.com/computer-system-architecture-morris-mano-third-edition-e31004022.html
http://www.c-jump.com/CIS77/CPU/VonNeumann/V77_0050_memory_operations.htm
https://www.pdfdrive.com/computer-architecture-and-security-fundamentals-of-designing-secure-computer-systems-e184601355.html


37 
 

Unit 2:  Addressing Modes 
 

Contents 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Content 
 3.1 Basic Terminologies 

 3.2 What is the Relevance of Addressing Modes? 

 3.3 Zero Address Modes 
  3.3.1 Implied Mode 

  3.3.2 Immediate Mode 
 3.4 Non-zero Address Modes 

  3.4.1 Register Mode 
  3.4.2 Register Indirect Mode 

  3.4.3 Autoincrement and Autodecrement Mode 
  3.3.4 Direct Address Mode 

  3.4.5 Indirect Address Mode 
  3.4.6 Relative Addressing Mode 

  3.4.6 Index Addressing Mode 
  3.6.7 Base Register Addressing Mode 

4.0 Self-Assessment Exercise(s) 
5.0 Conclusion 

6.0    Summary 

7.0    References/Further Reading 
 

  1.0  Introduction 
 
In this unit, you will acquire the skills for writing assembly program 

instructions for different addressing modes used by modern computers. 
To achieve this, you will learn the assembly language convention for 

different addressing modes and the corresponding register transfer 
operations which they implement.  

 

 2.0  Intended Learning Outcomes (ILOs)  
 

By the end of this unit, you will be able to perform programming tasks 
using addressing modes, present addressing modes and writing sample 

segment codes. 
 

 

 
 



38 
 

  3.0  Main Content  
 

How does the computer locate operands in its memory? 
Does it use the same or different methods to find where the operands are 

stored?  
 

3.1 Basic Terminologies 
 
 Address: An address is basically a reference to a place where a  

person or an object resides. The link will provide further understanding of 
what an address is about. An address may refer to any of the 

following: 
 

 In computer data storage, an address is a reference to a location 
where data may be accessed. 

 

 Computer networks refer to address as Internet Protocol 
(IP) address or other unique network location. 

 
 An Internet address is a synonym for a web address that references 

a specific resource on the Internet. 
 

 An address my also refer to the physical location of a building.  
 

A computer address usually refers to a location of data in memory or on 
an external storage device. It is a mean used by the CPU or devices 

for tracking data stored in the computer.  
  

 Addressing: In basic computer operation, addressing is a method 
used by the CPU to identify the location where data or information 

is stored. A computer network uses addressing to identify sending 

and receiving devices on the network. 
 

 Addressing mode: The term addressing modes refers to the 
method used to specify the operand part of an instruction. The 

instruction code contains an actual data value or the address of the 
result/operand. An addressing mode uses information contained in 

registers and/or constants in a machine language instruction or 
other location within the computer to calculate the effective 

memory address of an operand.  
 

3.2  The Purpose of Addressing Modes 
 
Computers use addressing mode techniques to accomplish either or both 

of the following purposes (Mano, 2014): 

https://www.computerhope.com/jargon/a/address.htm


39 
 

 

 To provide users with programming versatility using facilities such 
as pointers to memory, counters for loop, indexing of data and 

program relocation. 
 

 To minimize the number of used to store the operands in an 
instruction. 

 
 To give assembly language programmers the flexibility to write 

programs that can execute a large number of instructions within a 
short period of time.  

 
An understanding of the concept of instruction format will provide you 

with a good knowledge of the addressing modes presented in this unit. 
The instruction format defines the various fields contained in instructions. 

The figure below represents the format of assembly language instructions. 

 

Opcode Mode Address 

 
The opcode specifies the operation to be executed, while mode field helps 

to locate the operands. The operand refers to the actual data or the 

memory location used to store the data to be manipulated.  
 

Is it possible for an instruction to have an empty address field? 
How such instruction determine operand to manipulate or process? 

 
3.3 Zero Address Modes 

 
The opcode defines the operation carried out on the address field of the 

instruction. However, instructions in zero address modes do not have 
address field at all. Zero address modes are of the categories:  

 
 Implied mode 

 Immediate mode. 
 

3.3.1 Implied mode 
This mode gives an explicit specification of the operand in the definition of 
the instruction. A typical example is the instruction, “complement 

accumulator” (CMA) which has an empty address field. The instruction 
computes the 1‟s complement of the current contents of the accumulator. 

If the accumulator contains a binary value 0101 1010, CMA will change 
that value to 1010 0101. Generally, implied mode is found in all 

instructions that use the accumulator to reference registers.  

 

3.3.2 Immediate Mode 
The address field of this type of instruction contains the actual operand, 
rather than a reference to a register or memory location. This mode 



40 
 

manipulates data values based on the operation specified in the 

instruction. This addressing mode is used to assign numeric values to a 
register or memory location. The assembly language command 

 
LD #NBR 

 
will transfer a numeric value, NBR into the accumulator; that is,    
    . For example, LD 1000 will initialize the accumulator with the actual 

value 1000. 
   

Which group of instructions do not contain in their address fields? 
How does this group of instructions work? 

 

3.4  Non-zero Address Modes 
 

The address field of non-zero mode instruction is not empty. It usually 
contains reference to a register or memory location. The operation 

specified in the instruction manipulates the contents of the register or 
memory location in the address field. 

 

3.4.1 Register Mode 
A register mode instruction uses its address field to identify a register in 

CPU whose content is to be manipulated by the operation specified in the 
instruction. Generally, the processor registers are used to store the 

operands contained in the instruction. For example,  
 

LD R1 
 

will transfer the data contained in register R1 into the accumulator; that 
is,      . 

 

3.4.2 Register Indirect Mode 
Here, the instruction references a CPU register which contains the address 

of the operand in memory. The register stores the location of the operand 

rather than the actual operand to be manipulated. The instruction 
 

LD (R1) 
 

loads the accumulator with an operant whose memory address is stored 
in R1. That is,         .  
 

The programmer uses a previous instruction to store the address of the 
operand in a register. The memory address is specified by referencing the 

register. This technique is efficient because the number of bits used to 
select a register is lower than the number of bits required for direct 

specification of a memory address.  
 



41 
 

3.4.3 Autoincrement or Autodecrement Mode 
In this mode, the register is incremented or decremented after (or before) 
using its value to access the memory. The instruction  

 
LD (R1)+ 

 
increments the register R1 after using its contents to reference the 

memory. That is,                 .   

 
This type of instruction is used to increment or decrement the register 

used to store a reference to a table of data in memory. This enables a 
programmer to increase or reduce the value in the register after every 

access to the table. The high importance of autoincrement and 
autodecrement operations makes computers designers provide a special 

mode for automatic increment or decrement operations after data access. 
 

3.4.4 Direct Addressing Mode 
The effective address of the operand is given directly in the address field 
of the instruction. The instruction 

LD ADR 
 

loads the accumulator with an operand whose location in memory is 
specified by ADR. That is,          . The address, ADR refers to 

memory location which contains the operand that load instruction 

manipulates. Direct mode is used in branch type instruction to specify the 
actual address of the location to which the control unit should transfer 

program execution. 
 

3.4.5 Indirect Addressing Mode  
Here, the address field contains a reference to the memory address 
location which holds the actual address of the operand. The instruction 

 
LDA @ADR 

 
directs the control unit to use the address part, ADR to access the 

memory location which contains the actual address of the operand to be 
transferred into the accumulator. That is,             . This instruction 

performs memory reference twice; firstly, to access the location 

containing the actual address of the operand and secondly to use the 
actual address to retrieve the operand from the memory. 

 

3.4.6 Relative Addressing Mode 
The actual address of the operand is sum of the contents of the program 

counter and the address part of the instruction. This is written in 
assembly language format as  

 
LD $ADR 



42 
 

 
which is implemented as             . The operand (usually a signed 

2‟s complement value) may either be positive or negative. The memory 

location of the actual address is calculated based on the address of the 

next instruction. For example, if the program counter points to location 
500 and the operand of the instruction contains 44. The fetch phase reads 

the instruction at location 500 from memory and increments the program 
counter (by one) to 501. The actual address is calculated as 501 + 44= 

545. This translate to 44 memory locations after the address of the next 
instruction. Instruction formats based on relative addressing produces 

shorter address field because they require fewer number of bits compared 
to instructions that specify entire memory addresses. 

 

3.4.7 Indexed Addressing Mode 
This mode calculates the effective address by adding the contents of a 

special register in the CPU known as index register, to the address part of 
the instruction. The instruction 

  
LD ADR(X) 

 
is implemented as              . This instruction loads the 

accumulator with an operand whose effective address is the sum of index 

register and the value specified in the address part of the instruction. The 
operand field designates the start address of an array of data in memory. 

The memory stores each array operand in locations relative to the start 
address. The index value contained in the index register designates the 

interval between the start address and the address of the operand.  The 
same instruction can be used to access any operand in the array once the 

index register is initialized with the correct index value. The control unit 
accesses consecutive operands by incrementing index register. 

 

3.4.8 Base Register Addressing Mode 
This is a technique which adds the contents of a base register, BR to the 

operand provided in the instruction in order to obtain the actual address 
of a data. The address field contains an offset relative to this base 

address. The only difference between this technique and index addressing 
mode is that it uses an offset register known as a base register, rather 

than an index register. The two modes differ based on usage rather ho 

they calculate the actual address. The instruction  
 

LD ADR(X) 
 

is implemented as                Computers use base register 

addressing modes to implement program relocation in memory. The 

addresses of instructions must reflect the change in position when control 
transfers programs and data (in multiprogramming systems) from one 

memory segment to another. The use of a base register ensures there is 



43 
 

no need to change the displacement values of instructions. The value of 

the base register is updated by the control unit to indicate the where a 
new memory segment starts from. 

 
Addressing modes such as relative mode, index mode and base address 

mode computes the actual address by computing the sum of the value 
stored in a specific CPU register and the operand field of the instruction. 

That is,  
 

effective address = operand part of instruction + value in CPU register 
 

The special-purpose CPU register which may be the program counter, an 
index register or base register determines the addressing mode for the 

application. 
 

Table 3 uses the LOAD instruction to summarize the eight addressing 

modes and the corresponding register transfer operations (Mano, 2014). 
 

Table 3:  Addressing Modes 

Mode Assembly Mnemonic Register Transfer 

Direct addressing  LD ADR AC   M[ADR] 

Indirect addressing LD @ADR AC   M[M[ADR]] 

Relative address LD $ADR AC   M[PC + ADR] 

Immediate address LD #NBR AC   NBR 

Index addressing LD ADR(X) AC   M[ADR + XR] 

Register 
addressing 

LD R1 AC   R1 

Register indirect LD (R1) AC   M[R1] 

Autoincrement LD (R1) + AC   M[R1], R1   R1+1 

 
The table presents the assembly mnemonic and the actual 

implementation for each instruction. ADR, NBR, X, Rl and AC represent an 
address, a number (or operand), an index register, a processor register, 

and the accumulator register respectively. The @ character is the symbol 
for an indirect address, while the $ sign preceding an address indicates 

that the address is relative to the program counter PC. In immediate 
mode instruction, the # character which precedes the operand indicates 

that the operand is a numeric value. An indexed mode instruction places a 
register in parentheses after the symbolic address. The register indirect 

mode encloses the reference to the register containing the memory 

address in parentheses. The autoincrement mode places a positive sign 
after the register in parenthesis. The autodecrement mode uses a 

negative sign instead. You will need to know the available instructions and 
the addressing modes before you can write assembly language programs 

for a particular computer. 
 

 



44 
 

More details on the characteristics and applications of the various address 

modes are presented as follows. 
 

Data register direct 
The source or destination of data is referenced by data register (D0-D7). 

 
For example, if you append „.B‟ to MOVE, the operation will affect only the 

low byte of the destination register.  

 
 
Address register direct 

The destination of data is referenced by the address register (A0-A7). This 

mode can only specify word or longword operands. A signed operation is 
performed on a word operand to fit the register. The example shows the 

transfer of the  
contents of A3 into A0. 

 

 
 
 

Absolute short 
A one extension word of the bits 16-23 of the instruction specifies the 

source or destination address. The full address is obtained by performing 

a signed operation of the 16-bit short address 
 

For example, the source address is specified using the immediate mode, 
destination is specified using absolute short address. The operation is 

„.W‟, such that a signed operation extends the source address to two 
bytes 

 

 
 
 



45 
 

Absolute long 

This mode uses two extension words to specify source or destination 
address in an instruction. 

 
For example, the source address is specified using the immediate mode, 

destination is specified using absolute short address n. The operation 
modifies only one memory byte and is specified as „.B‟. 

 

 
 
Register indirect 

An address register references the source or destination address of the 
operand. 

 
The example below shows an instruction which transfers a longword from 

data register D0 to the memory location referenced by address A0. 
 

 
 

Post-increment register indirect 
 

This technique increments the address register by the number of bytes 
transferred after a read or write operation.  

 
byte: [Ai]←[Ai]+1 g word: [Ai]←[Ai]+2 g longword: [Ai]←[Ai]+4 

 
 

 



46 
 

Pre-decrement register indirect 

Uses a „-‟ sign before (Ai)  
A technique which decrements the address register by the number of 

bytes transferred after a read or write operation.  
 
 byte: [Ai]←[Ai]+1 g word: [Ai]←[Ai]+2 g longword: [Ai]←[Ai]+4 

 

 
 

Register indirect with offset 
 

Uses a 16-bit signed offset to extend the memory word specified in the 
instruction. It calculates the actual address of the source or destination by 

appending a sign-extended offset to the address register. For example, 
the effective address, n is computed by adding 6 to the address register. 

The content of the address register remains the same. 
 

 
 
Register indirect with index and offset 

 
A variation of register indirect mode which uses an index register and an 

8-bit signed offset (displacement) n. The effective address is the sum of 
the displacement, the value in the index register and the value in the 

address register.  
For example, n =$10+$100A+$2=$101C 

  
 



47 
 

 
 

PC-relative with offset 
This approach calculates only the effective source address by adding a 16-

bit displacement to the contents of the PC. It uses a position-independent 
code, which enables the assembler to calculate the displacement by 

subtracting PC from label. 
 

 
PC-relative with index and offset 
This mode calculates the relative address to the PC by adding an 8-bit 

signed displacement to an index register. 
 

 
Immediate 

Specifies the source operand using two extension words and may be 
expressed in: 

decimal (& prefix or none)  
hexadecimal ($ prefix) 

octal (@ prefix) 

binary (% prefix) 
ASCII (string within „‟) 

 
Immediate quick 

This is an optimized version of immediate addressing which uses one 
word binary representation for the instruction and data. The operand is 

stored in a 32-bit sign-extended destination address. This mode can be 
used with the following instructions 

MOVEQ (operand must be an 8-bit signed integer) 
ADDQ (operand must lie within the range of 1 to 8) 

SUBQ (operand must lie within the range of 1 to 8) 



48 
 

 Discussion 
 

Discuss the various addressing mode and their differences. 
 

  4.0 Self-Assessment Exercise(s) 
 
1. In basic computer operation, ___________ is a method used by the 

CPU to identify the location where data or information is stored. 
A. Addressing 

B. Addressing mode 
C. Indirect Addressing 

D. Immediate Addressing. 
Answer: A 

 
2. Addressing modes gives assembly language programmers the 

flexibility to write programs that are more efficient with respect to 
the number of  

A. Lines of codes 

B. Instructions and execution time. 
C. Programs 

D. All of the above. 
Answer: B 

           

  5.0 Conclusion 
 

The processor uses addresses to find operands in memory or register 
locations. Addressing modes enable the programmer to write programs to 

manipulate operand in computer memory or register location in a 
predefined way. 

 

   6.0  Summary 
 
In this unit, you have learned how to use different addressing modes to 

write instructions for manipulating memory or register based operands. In 
the next unit, you will learn how to write program segments in assembly 

language using different instruction types.   

 
 



49 
 

  7.0 References/Further Reading 
 

Address. Available here 

 

Mano, M.M. (2014). Computer System Architecture. (3rd ed.).  Available here 
 

Wang, S.P. & Ledley, R.S. (2003). Computer Architecture and Security: 

Fundamentals of Designing Secure Computer Systems. Available 
here 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
  

https://www.computerhope.com/jargon/a/address.htm
https://www.pdfdrive.com/computer-system-architecture-morris-mano-third-edition-e31004022.html
https://www.pdfdrive.com/computer-architecture-and-security-fundamentals-of-designing-secure-computer-systems-e184601355.html


50 
 

Unit 3:  Instruction Types 
 

Contents 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Content 
 3.1 What is a Computer Instruction?  

 3.2 Classification Based on Type of Operation 

3.2.1 Data Transfer Instructions 
3.2.2 Data Manipulation Instructions 

3.2.3   Program Control Instructions 
3.3 Classification Based on Number of Operands in Address Field 

3.3.1 Zero Address Instruction 
3.3.2 One Address Instruction 

3.3.3 Two Address Instruction 
3.3.4 Three Address Instruction 

4.0 Self-Assessment Exercise(s) 
5.0 Conclusion 

6.0    Summary 
7.0    References/Further Reading 

 

  1.0  Introduction 
 

In this unit, you will learn about the major categories of instructions used 

by the computer to carry out its operations and different types of 
instructions under each category. After studying this unit, you will be able 

to write instructions to achieve different purposes and be able to combine 
several instructions into useful assembly language programs. 

 

 2.0  Intended Learning Outcomes (ILOs)  
 

By the end of this unit, you will be able to: 
 

 Interpret and modify instruction types of programming tasks. 
 Evaluate instruction types of programming tasks. 

 
 

 
 

 

 
 



51 
 

  3.0  Main Content  
 

3.1  What is a computer instruction? 
 

Have you given instructions to anyone today? Did you get instructions 
from your facilitator or boss? Can you identify some reasons why people 

give instructions to or receive instructions from others? 
 

A computer instruction is a set of commands type by a human using a 
keyboard (or another input device) and given to a computer to enable it 

carry out a specific task. The computer uses an operating system and a 
compiler to interpret the instructions and carry out the specified tasks.  

 
Now, does the computer determine which operation to carry out and how 

to carry it out? 
 

Which classes of instructions are available in modern computer systems? 

 

3.2 Classification Based on Type of Operation 
 

There are three categories instructions based on this parameter: 
 

 Data transfer instructions 
 Data manipulation instructions 

 Program control instructions 
 

3.2.1 Data Transfer Instruction 
The instructions transfer data or information from one location in the 
computer to another without changing its value. The transfers may take 

place between on processor register and another, between the memory 
and processor registers, or between processor registers and I/O. The 

commonly used data transfer instructions are presented in Table 4 (Mano, 
2014). Also presented is the opcode (mnemonic symbol) for each 

instruction. 
Table 4: Basic Data Transfer Instructions 

Name Opcode (Mnemonic) 

Load LD 

Store ST 

Move MOV 

Exchange XCH 

Input  IN 

Output OUT 

Push PUSH 

Pop POP 



52 
 

Note that the mnemonics used by different computers may differ even if 

the instruction name is the same. However, the operations performed are 
basically the same. The load instruction is widely used to transfer data 

from memory to a processor register (usually the accumulator). The store 
instruction transfers data from a processor register into memory. 

Computers with multiple CPU registers use the move instruction to 
transfer data between registers. It is also used to transfer data between 

two memory locations or between CPU registers and memory. The 
exchange instruction swaps data between a register and memory location 

or between two registers is accomplished using the exchange instruction. 
The input and output instructions are used for data transfers among 

processor registers and input or output terminals. Data transfers between 
processor registers and a memory stack are carried out using the push 

and pop instructions. 
 

Some versions of assembly language use the opcode (mnemonic symbol) 

to highlight the distinctions between different addressing modes. This 
makes the symbol LDI and MOVI become the mnemonic for load 

immediate and move immediate respectively. Other variations of 
assembly language indicate the addressing mode by using a special 

symbol. For example, placing a pound sign # before the operand indicates 
that the instruction uses the immediate mode. Note that each instruction 

can be used with different addressing modes. 
 

3.2.2 Data Manipulation Instructions 
These refer These refer to a group of instructions which provides the 
processor with computational capabilities so that it can perform various 

operations on data. Data manipulation instructions perform arithmetic, 
logic and shift operations.  Such instructions are usually of three basic 

types: 
 

i. Arithmetic instructions 
ii. Logical and bit manipulation instructions 

iii. Shift instructions 
 

                                 Arithmetic Instructions 
Arithmetic instructions perform basic arithmetic operations such as 

addition, subtraction, multiplication, and division. Modern computers 

support these operations. Some small computers, however, can 
implement only addition and (possibly) subtraction instructions. The 

multiplication and division operations are implemented as special forms of 
addition and subtraction and are carried out using software subroutines.  

 
Table 5 presents commonly used arithmetic instructions (Mano, 2014).  

 
 

 



53 
 

           Table 5: Commonly Used Arithmetic Instructions 

Name Mnemonic 

Increment INC 

Decrement DEC 

Add ADD 

Subtract SUB 

Multiply MUL 

Divide DIV 

Add with carry ADDC 

Subtract with borrow SUBB 

Negate (2‟s 

complement) 

NEG 

 

The increment instruction is used to increase the value of a register or 
memory operand by 1. The execution of an increment operation on a 

register containing all 1's produces an all 0's result. The decrement 
instruction reduces the binary contents of a register or memory location 

by 1. A decrement of a number containing all 0's, produces a result 
containing only 1's. The add, subtract, multiply, and divide instructions 

can be applied on different data types (integer, floating point, binary or 
decimal data, single-precision or double-precision data). The operations 

are carried out on data that are in processor registers during program 

execution. 
 

A computer may have instructions that specify the data types of the 
operands it manipulates. Such computers may have different add 

instructions binary integers, floating-point operands, and decimal 
operands. The following add instructions use different data types. 

 
 ADD I  Add two binary integer numbers 

 ADD F  Add two floating - point numbers 
 ADD D  Add two decimal numbers in BCD 

 
The computer stores the carry bit from an operation using a special carry 

flip-flop. The "add with carry" instruction sums two operands and adds the 
carry bit from the previous operation. In a similar way, "subtract with 

borrow" instruction computes the difference of two words and a borrow 

which may occur as a result of a previous subtract operation. The negate 
instruction calculates the 2's complement of a number, and chages the 

sign of an integer that is represented in the signed-2's complement form. 
 

Logical or Bit Manipulation Instructions 
These instructions are used to manipulate individual bits or a group of bits 

stored in registers. The logical instructions process each bit separately 
and manipulates it as a Boolean variable. Hence, it is possible to change 

bit values, to clear a single bit or a group of bits, or to add new bits into 
registers or memory operands. 



54 
 

 

Table 6 lists common logical and bit manipulation instructions (Mano, 
2014). 

 
Table 6: Logical and bit manipulation instructions 

Name Mnemonic 

Clear CLR 

Complement COM 

AND AND 

OR OR 

Exclusive-OR XOR 

Clear carry CLRC 

Set carry SETC 

Complement carry COMC 

Enable interrupt EI 

Disable interrupt DI 

 
The clear instruction replaces the specified operand by 0's. The 

complement instruction (1's complement) is takes a binary operand as an 
input and produces an output containing the inverse of the input bits. The 

AND, OR, and XOR instructions performs the corresponding logical 
operations on individual bits of the operands. The Boolean operations 

performed by logical instructions are commonly implemented as bit 
manipulation operations. There are three possibilities when it comes to bit 

manipulation:  
 a selected bit can be cleared to 0,  

 or can be set to 1, or  
 can be complemented. 

 
Clearing a bit or a selected group of bits can be done using the AND 

instruction. ANDing a binary value to 0 produces a 0; while ANDing a 

binary value to 1 will produce no change in the value of the variable. That 
is,      , and      . You can AND operands containing 0's in specific 

bit positions with another operand in order to a selectively clear the bits in 
the target operand. The AND instruction also does masking (in fact AND 

instruction is called a mask) by inserting 0's in specific position(s) in an 
operand. 

 
The OR instruction performs a selective set operation on a bit or a 

selected group of bits of an operand. ORing any Boolean variable   with 1 

produces a 1, but the value remains the same when ORed with a 0. That 
is,           and          . You can set the individual bits of a target 

operand by performing an OR operation on an operand containing 1's in 

the specific bit positions and the target operand with the corresponding 
bits positons to be changed to 1. The XOR instruction performs a selective 

complement operation on the bits of an operand. It is based on the 
Boolean relationships          and        . Thus, XORing a binary 



55 
 

variable with a 1 produces its complement, without changing its value 

when XORed with a 0. The instructions allow you to set, clear or 
complement individual bits. Bit manipulation instructions can also be used 

to manipulate a flip-flop that controls the interrupt operations in the 
computer. 

 
Shift Instructions 

Shift instructions are used to move the bits of an operand to the left or 
right. The operation may be either logical shifts, arithmetic shifts, or 

rotate-type operations. The type of shift is determined by the bit inserted 
at the end of the operand. Table 7 lists four types of shift instructions.  

 
Table 7: Typical Shift Instructions 

Name Mnemonic 

Arithmetic shift left SHLA 

Arithmetic shift right SHRA 

Logical shift left SHL 

Logical shift right SHR 

Rotate left ROL 

Rotate right ROR 

Rotate left through 

carry 

RORC 

Rotate right through 

carry 

ROLC 

 

The rotate instructions shift out the bits at one end of an operand into the 

other end in a circular fashion. In rotate through carry instruction, a carry 
bit is seeing as a part of the register holding the operand being rotated. 

The instruction inserts the carry bit into the least significant bit position of 
the operand in the register, transfers the leftmost bit position into the 

carry, and shifts the entire bits of the operand to the left at the same 
time. 

 
The logical shift places 0 at the end of a binary operand. The last bit is the 

leftmost bit for shift right and the rightmost bit position for the shift left. 
Arithmetic shifts are usually implemented as signed-2's complement 

operations. The sign bit in arithmetic shift-right instruction is shifted to 
the right alongside the rest of the number. The sign bit itself remains 

unchanged and the end bit also does not change. In arithmetic shift-left 
instruction, a 0 is inserted at the end position. This is similar to the logical 

shift-left instruction. Arithmetic shift-left instruction is not available as a 

separate instruction in many computers. 
 

3.2.3 Program Control Instructions 
Program control instructions are used to make decision and alter the 

direction of program execution. The execution of a program control 
instruction changes the contents of the program counter and redirects the 



56 
 

flow of control. This resells in an alteration of the normal sequence of 

program execution.  Digital computers use this mechanism to control the 
flow of instruction processing and provide branching to different portions 

of the program. 
 

Table 8 provides a list of commonly used program control instructions 
(Mano, 2014).  

 
Table 8: Program Control Instructions 

Name Mnemonic 

Branch BR 

Call JMP 

Skip SKP 

Call CALL 

Return RET 

Compare (by 

subtraction) 

CMP 

Test (by adding) TST 

 

The branch and jump instructions perform the same operation and one 
can be used in place of the other. However, they may   sometimes be 

used to indicate distinct addressing modes. The jump (or branch) usually 
contains a single operand in the address part of the instruction. The 

assembly language format is  
 

BR ADR 
 

where ADR is a symbolic name for a memory location. A branch 
instruction transfers the value of ADR into the program counter. This 

makes the instruction at location ADR the next instruction to be executed. 
 

Branch and jump instruction may be conditional or unconditional. A 

conditional branch transfers control does not require the satisfaction of 
any conditions before shifting control to a specified address. The 

conditional branch requires the satisfaction of specific before the branch 
can take place. A conditional branch instruction may be branch if positive 

or branch if zero. If the condition is satisfied, the address specified in the 
branch instruction is transferred into the program counter and that 

become the address of the next instruction. If the condition is not met, 
contents of the program counter remains the same does and the program 

continues with normal sequential execution of instructions. 
 

The skip instruction usually has an empty address field. A conditional skip 
instruction transfers control to the next instruction based of the 

satisfaction of the predefined condition. This is achieved by a 
simultaneous increment of the PC during both the retrieval and execution 



57 
 

phases of an instruction. The processor transfers control to the next 

instruction If the condition is not met.  
 

The compare and test instructions listed in Table 8 do not cause a direct 
alteration of the sequence of program execution. They only set conditions 

for the next set of conditional branch instructions by computing the 
difference of two operands, and without retaining the result of the 

operation. However, the operation results in the setting of certain status 
bit conditions. Similarly, the test instruction executes a logical AND on 

two operands and updates certain status bits, but does modify the 
operands or retain the result of the computation. Commonly used status 

bits are carry bit, sign bit, a zero indication, and an overflow condition. 
 

Conditional Branch Instructions 
Table 9 presents a summary of commonly used branch instructions 

(Mano, 2014).   

 
Table 9: Common Branch Instructions 

Mnemonic Branch condition Tested condition 

BZ Branch if zero     

BNZ Branch if not zero     

BC Branch if carry     

BNC Branch if no carry     

BP Branch if plus     

BM Branch if minus     

BV Branch if overflow     

BNV Branch if no overflow     

               Unsigned Compare Conditions       

BHI Branch if higher     

BHE Branch if higher or equal     

BLO Branch if lower     

BLOE Branch if lower or equal     

BE Branch if equal     

BNE Branch if not equal     

               Signed Compare Conditions       

BGT Branch if greater than     

BGE Branch if greater or equal     

BLT Branch if less than     

BLE Branch if less or equal     

BE Branch if equal     

BNE Branch if not equal     

 

Note that each mnemonic is made up of the letter B (for branch) and an 
abbreviation of the condition name. The letter N (for No or Not) indicates 

that the opposite of the condition state is used. Thus, BC and BNC are 
interpreted as Branch on Carry, and BNC is Branch on No Carry 



58 
 

respectively. Control of program execution is transferred to the address 

specified by the instruction if the stated condition is met. Otherwise, 
program execution continues with the instruction in sequence.  

 
The zero status bit determines whether or not an ALU operation produces 

a zero or non-zero result. The carry bit indicates if the most significant bit 
of the contents of the ALU is a carry bit. It is can be combined with the 

rotate instructions to check determine the bit shifted from the end of a 
register operand into the carry position. The sign bit reflects whether the 

most significant bit of the output of ALU is positive or negative. That is, S 
= 0 denotes a positive sign and S = 1, a negative sign. Therefore, a 

branch on positive checks for if the sign bit is 0 and a branch on negative 
checks if the sign bit is 1. Generally, these two conditional branch 

instructions can be used to determine the sign and magnitude of the most 
significant bit. The overflow bit is used to check if the result of an 

arithmetic operation causes an overflow. That is, if the number of bits in 

the output exceeds the size of the register or memory word allocated to 
store the result. It is used in conjunction as part ofarithmetic operations 

performed on signed (2's complement) numbers. 
 

Subroutine Call and Return 
A subroutine is a self-contained part of the program that performs a 

specific function. The main program issues repetitive calls to the 
subroutine as may be required during execution. Each call to a subroutine 

transfers control of execution to the first address of the subroutine and 
triggers the execution of its instructions. Control is returned to the main 

program after the execution of the subroutine.  
  

Call and return instructions such as call subroutine, jump to subroutine, 
branch to subroutine, or branch and save address can be combined with 

subroutines. The location where a subroutine begins from can be specified 

by the call and return instruction consisting of an operation code and an 
address. The execution of this instruction involves two operations: (1) 

creating a temporary location used to store a memory address to which 
control is transferred after the execution of the subroutine (the return 

address (i.e. the return address), and (2) the transfer of control to the 
beginning of the subroutine. The return from subroutine retrieves the 

return address from the temporary location and loads it in the program 
counter. This transfers control to the instruction referenced by the return 

address. 
 

Why do some computers have only one operand in their address field, 
while others have up to two or three operands? 

Does the number of operands in the address field have any effect of the 
ease of writing programs and the execution of such programs by the 

computer?  

 



59 
 

 

3.3 Classification Based on Number of Operands 
 
This approach classifies instructions based on the number of operands in 

the address field. Here, there are three main types of instructions: 
 

 Zero-address instruction 
 One-address instruction 

 Two-address instruction 
 Three-address instruction 

 

3.3.1 Zero Address Instructions 
Zero-address instruction commonly found in stack-organized computers 

have empty address field for arithmetic operations such as addition 
(ADD), subtraction (SUB), multiplication (MUL) and division (DIV). 

However, the PUSH and POP instructions, uses an address field to 
reference the operand that communicates with the stack. The following 

program implements the arithmetic expression V = (W + X) ∗ (Y+ Z) for a 

stack organized computer. Note that TOS stands for top of stack. 
 

PUSH      W  TOS ← W  
PUSH      X  TOS ← X 

           ADD            TOS ← (W + X) 

PUSH      Y  TOS ← Y  

PUSH      Z  TOS ← Z 
         ADD              TOS ← (Y + Z) 

        MUL              TOS ← (Y + Z) ∗ (W + X)  

     POP       V   M [V] ← TOS 

 

3.3.2 One Address Instructions 
A one-address instruction as the name suggests contains only one 
operand in the address part of the instruction. These instructions carry 

out all data manipulations using the accumulator (AC). It also stores the 
result of all operations in the accumulator.  

 
Example 1 

The following program is used implement the arithmetic instruction X = (A 

+ B)  
 

  LOAD A  AC ← M [A] 
                ADD B     AC ← A [C] + M [B] 

   STORE X   M [X] ← AC 

 
All operations are performed on the contents of the accumulator and data 

stored in a memory address. The intermediate result is stored in 
temporary memory address. 

 



60 
 

 

Example 2 
The following program uses one address instruction to computer the 

perimeter of a rectangle. Recall that Perimeter = 2*(L+B) 
 

 
LOAD L  // Load the length into the accumulator 

CLC // Clear the carry flag so it does not get added into the result 
ADD B // Add the breadth and store in the accumulator 

MULT #2  // Multiply the contents of accumulator by 2 
STORE P //Transfer the result in accumulator to memory location P 

 
Example 3 

Add x and y together and storing the result in x; that is, x = x + y 
 

LOAD x // Load one operand into the accumulator. 

CLC // Clear the carry flag so it does not get added into the result 
ADD y // Add the other operand 

STA x // Store the operand back to x 
 

3.3.3 Two Address Instructions 
A two-address instruction contains two operands in the address portion of 

the instruction. One of the operands is as the source, while the other is 

the destination. Two-address instructions are the most common in 
computers used for commercial operations. The instruction 

  
ADD R1, R2 

 
denotes the operation R1 ← R1 + R2. This instruction directs the control 

to add the contents of register R2 to that of R1 place the result in R1. 
Here, R2 and R1 are the source and destination respectively. 

 

The instruction  
MOV R1, R2 

 
denotes the register operation R1 ← R2 (or R2 ← R1, depending on the 

kind of computer you use). 
 

Example 4 
We rewrite the program in Example 2 using two address instructions. 

 

MOV R1, L  // Load the length into register R1 
MOV R2, B  // Load the breadth into register R2 

ADD R1, R2 // Add the contents of R1 and R2 and store the result in R1 
MULT R1, #2 // Multiply the result in R1 by numeric value 2 and store 

the result in R1 
STORE P, R1 // Transfer the contents of R1 into memory location P 



61 
 

3.3.4 Three Address Instructions 
A two-address instruction These instructions feature three operands in the 
address field. Two of the operands designate the sources, while the third 

operand is the destination. The contents of the address field may specify 
either a processor register or a memory operand. The following assembly 

language program evaluates X = (A + B) ∗ (C + D). The register transfer 

operation is also indicated alongside the corresponding instruction.  
 
ADD R1, A, B  R1 ← M [A] + M [B] 
                     ADD R2, C, D  R2 ← M [C] + M [D] 

                     MUL X, R1, R2 M [X] ← R1 ∗ R2 

 
The computer uses two processor registers, R1 and R2. The symbols, M 

[A], M [B], M [C] and M [C] denote the operands at memory locations A, 

B, C AND D respectively. Three-address format produce short programs 
when applied to arithmetic operations. However, the binary-coded 

instructions used to specify three-address formats require too many bits. 
The format of instructions in Cyber 170 (an example three-address 

instruction commercial computer) is based on either three register 
address fields or two register fields and one memory address field. 

 
Mini project 

 
Study sample programs written using one-address, two-address and 

three-address instructions. Compare them in terms of size, complexity, 
ease of understanding, etc. Discuss your findings in your study group.  

 

  4.0 Self-Assessment Exercise(s) 
 

1. Data manipulation instructions can be seen as 

A. A group of instructions which provides the processor with 
computational capabilities so that it can perform various 

operations on data. 
B. The instruction set that provides instructions to move data 

from/to these two registers to/from integer registers. 
 

Answer: A 
 

  5.0 Conclusion 
 
The availability different instruction types allow an assembly language 

programmer to select an instruction that is suitable for a specific 
operation. This enables the programmer to translate algorithms into 



62 
 

functional computer programs that process data stored in memory and 

register locations and to accomplish the operations specified in 
algorithms. 

 

   6.0  Summary 
 
In this unit, you have learned the various types of instruction, their uses 

and format. The knowledge you have acquired will enable you to write 
functional assembly language programs for real world problems. 

 

  7.0 References/Further Reading 
 

Mano, M.M. (2014). Computer System Architecture. (3rd ed.).  Available: 
here 

 

Null, L. & Lobur, J. (2003). The Essentials of Computer Organization and 
Architecture. Sudbury, Massachusetts: Jones and Bartlett 

Publishers.   
           

Wang, S.P. & Ledley, R.S. (2003). Computer Architecture and Security: 
Fundamentals of Designing Secure Computer Systems. Available 

here 
 

   
  

https://www.pdfdrive.com/computer-system-architecture-morris-mano-third-edition-e31004022.html
https://www.pdfdrive.com/computer-architecture-and-security-fundamentals-of-designing-secure-computer-systems-e184601355.html


63 
 

Module 3: Secure Component Design 

 

Module Introduction  
 
This module introduces you to the secure component design of the 

computer system. It discusses components design that includes 
processing unit design, memory system design and input and output 

design. 

 
Unit 1:   Processing unit design 

Unit 2:   Memory system design 
Unit 3:   Input and output design 

Unit 1:  Processing Unit Design 
 

 

Unit 1:   Processing unit design 
 

Contents 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Content 
 3.1 Instruction set 

  3.1.1 Instruction set classification 
   3.1.1.1 Logic Instructions 

   3.1.1.2 Arithmetic Instructions 
   3.1.1.3 Intel 64/32 Instructions 

 3.2 Registers 
 3.3 Program Counter and Flow control 

 3.4 RISC Processors 

 3.5 Pipelining 
  3.5.1 Types of Pipelines 

 3.6 Central Processing Unit Security 
 3.7 Virtual Central Processing Unit 

4.0 Self-Assessment Exercise(s) 
5.0 Conclusion 

7.0 Summary 
7.0 References/Further Readings 

 

1.0  Introduction 
 

In this unit, you will learn the concept of processing unit design of a 
computer system. The processing unit design is divided into seven 



64 
 

sections including instruction set, registers, program counter and flow 

control, Reduced Instruction Set Computer (RISC) processors, pipelining, 
CPU security and virtual CPU. The instruction set is subdivided into 

instruction classifications, logic instructions, arithmetic instructions, and 
Intel 64/32 instructions. 

 

2.0 Intended Learning Outcomes (ILOs)  
 

In this unit, you are expected to be able to: 
 

1. Design a processing unit 
 

3.0  Main Content  
 

3.1 Instruction set 
 
Instruction set offers a platform that enables users to carry out full use of the 
processor. The choice of instructions is decided by the apparatus designed for by 

the processor. For instance, a data-intensive data can pick processors that are 
built with greater word size, extra math functions and an excellent number of 

memory management features. Conversely, a processor designed/developed for 
implanted devices like remote controls for TV and DVD player could have simple 
or fewer instructions, little word size and easy addressing characteristics 

(Layton, 2016). 
 

3.1.1 Instruction classification 
Instructions often comprise 2 components namely, operands and 

operation code (opcode). Each instruction may contain one opcode and 
zero or more than one operands. Figure 3.1 depicts regular instruction 

formats. Operands are situated either in a memory location or in registers 

with fast speed. Table 3.1 highlights some well-known categories of 
instructions. Logic and arithmetic instructions are considered as a sub-

part of the register reference instructions and memory. 
 

 
Figure 3.1 Opcode and Operands 

 
 

 
 



65 
 

3.1.1.1 Logic Instructions 
In the instructionset, every processorcontains logical operation 
instructions. Regular logic operations include NOT, OR AND, and Exclusive 

OR (XOR). NOT operation turns upside down an input AND requires that 
both inputs are 1 so as to obtain 1. OR requires that one or more value of 

the inputs is 1 so as to obtain 1. Conversely, OR brings out 0 when both 
inputs are zero (0). Last is the XOR, which works by adding both inputs 

and removing the carry if it occurs. Thus, when two inputs are dissimilar, 

the output is 1 else is zero (0). Figure 9 depicts the instances of the logic 
operation pertaining to XOR (Patterson and Hennessy, 2013). 

 

3.1.1.2 Arithmetic Instructions 
The arithmetic instructions comprise SUB, DIV, ADD, MUL and the rest. 
Design and development of arithmetic instructions differ based on the 

type of processor. Meanwhile, it typically relies on the extent of size of the 

instruction. Depending on the amount of operands, the instructions are 
ordered as 1) three addresses operands 2) two addresses operand 3) one 

address and zero address operands. Table 10 depicts regular classes of 
instructions. 

 
Table 10 Regular classes of instructions 

Instruction Type Operation Process 

Memory to memory 
instructions 

The two operands reside in memory 

Memory to register 
instructions 

Just only single operand resides in memory, 
while the other one resides in register 

Register reference 

instructions 

Operation is conducted on constituent of 

one or extra registers 

Memory reference 

instructions 

Operation is conducted on constituent of 

the memory location 

Control instructions Pause, halt, branching, and the rest. 

Input and output 

instructions 

Perform input or output 

Macroinstruction Group of instructions 

 

Considering three address machine, it contains 2 operands and the 
outcome of the result is kept separately. A two address machine re-use 

single address, which is one of the operands and afterward retain the 
outcome. The one-address machine often employs the accumulator (ACC) 

with one address, that is, usually a register to carry out the execution. 
 

Address in instruction set is often mentioned as a memory unit, register 
or both. Because registers are considered to be more speedy than 

memory, instructions that employs registers as operands are faster than 
computers that employs only memory. Ordinary processors employ 

registers to carryout arithmetic operations,. A number of embedded chips 

to make use of memory to do so (Coppola et al., 2018). 



66 
 

The following are instances of instructions involving varied operands 

 
i. Three addresses machine 

                         

 
Every instruction requires three memory access or registers during every 

execution. In reality, the greater parts of operations are centered on two 
operands with the resulting outcome residing in the location of one of the 

operand. Hence, a two address instruction could be suitable for this kind 

of processor. 
 

ii. Two addresses machine 
                       

 

The two operands instruction are a type of processors. Further to fetch 
execution cycle, the two addresses put in a write-back cycle in order to 

keep the outcome to the position/location of an individual operands. 
 

iii. One address machine 

 
                         

 

A one-address processor might be considered as a lookalike to a two-
address processor excluding if by default it uses the ACC and registers in 

CPU. 
 

The addressing approach for operands could be register, indirect or direct. 

Direct concept for addressing is considered as when an operand is a value 
based on numbers. The Indirect concept denotes that the operand is an 

address, which points to a memory location. While the register addressing 
concept is considered as when the operand is kept in a register. 

 
Direct addressing                             

 
Indirect addressing                          
 

Considering indirect concept of addressing, the    (  ) operand is 

considered as a pointer or label referring to the memory position/location 
of the main number. 

 

3.1.1.3 Intel 64/32 Instructions 
Instructions for transferring data transmit between the installed memory 
and the general purpose and section registers. The data transfer 

instructions also carry out particular operations for example; stack 
access, data conversion, and conditional moves. There are several 

instructions related to the Intel 64/32, which includes move, stack 

manipulation, shift, rotate, control transfer, call and return, loop, random 



67 
 

number generator, and program environment instructions (Andrade et al., 

2014).  
 

3.2 REGISTERS 
 
Registers are developed for particular purposes and are wired deliberately 

for diverse functions. A processor has one or more registers to store data 
and instruction. A number of unique registers are employed to hold the 

condition of the present operation. Do you know the advantage of 
registers in a system? Well, registers are the memory with the most rapid 

processing in a computer system. The rationale for using registers is to 
make storage and computation process faster. Through minimizing the 

time for accessing external and internal memory. Thus, the machine with 
huge amount of registers for enhancing speed is named, reduced 

instruction set computer (RISC). Processors often allocate unique 

functions to a particular registers, as well as the following registers: 
 

i. An Accumulator (ACC): gather the outcome of computations (von 
Neumann,2006). 

ii. Address registers: monitor where a specified instruction or portion 
of data is kept in memory. Every memory location is recognized by 

an address. 
iii. Data registers: do not permanently store data collected from or that 

is about to be forwarded to a memory. 
iv. Status Registers: performs the function of storing present CPU 

status. 
v. Program Counter (PC): is employed to point to the present 

command being executed. 
 

Recently built processors often contain higher sophisticated control unit 

and devoted control bits for security. Thus, Intel Core i7-900 is centered 
on 45 ns process paradigm. It comprises an executable bit, which enables 

the classification of memory into non-executable or executable. This 
classification is used when incorporated with an augmenting operating 

system. Whenever a code tries to run in a non-executable memory, the 
processor triggers a fault message to the operating system. This 

characteristic can evade a number of classes of viruses or worms, which 
take advantage of buffer overrun vulnerabilities. Thus, assist to enhance 

the complete security of the system (Daswani et al., 2007).RISC often 
employs registers for every operand in specific function, for instance, 

ADD. It enables programs execute faster. Consequently, programmers 
must load values from the stored memory to registers hence causing the 

program to be large in size. The different registers include the general-
purpose, segment, and EFLAGS register. 

 

 
 



68 
 

3.3 Program Counter and Flow Control 
 

A program counter (PC), in another word instruction pointer, serve as a 
unique register that keeps the present program running location. PC is 

added up to point to the subsequent instruction by adding up a single 
word after fetching every instruction (Hennessy and Patterson, 2013). 

 
        

 

In the expression, 1 denotes the subsequent instruction. In a 32 bit 

processor, subsequent instruction is located at PC+4. Thus, PC often 
points to the subsequent command (instruction) after the present 

command is fetched, translated, and executed. Program does not often 
execute linearly. It can halt at a number of points to execute task 

interrupts and jump to a different instruction; this is called branching. We 
have two kinds of branches namely, unconditional and conditional. The 

goto statement is a popular method in developing branches. 
Nevertheless, there is a divergent view on whether not to use or to use 

goto. A lot of programming languages used goto statement although; a 
number of others did not, for example, Java. The structured program rule 

justify that the goto declaration is not required to code programs (Knuth, 
1998). The goto statement is usually joined with If statement in the 

pattern of: 
 

IF condition THEN goto label; 

 

3.4 RISC Processors 
 

A reduced instruction set computer (RISC) is termed as a kind of 
microprocessor, which recognizes a comparatively constrained amount of 

commands. The major advantage of the RISC is the fact that it runs the 
commands/instructions extremely fast because the instructions are 

reduced and now simple. In addition, another major benefit is that RISC 
chips need less number of transistors, which position them to be cheaper 

to develop. From the time when RISC was discovered, traditional systems 
have been named to as complex instruction set computers (CISCs). The 

design characteristics for the majority of RISC processors are pipelining, 
one cycle execution at a time and a huge amount of registers. 

Considering the architecture and programming of the RISC, only easy 

commands, which can be run in one clock cycle is employed. The 
predecessor of the RISC is the CISC architecture. The key aim of CISC 

architecture is to finish a whole task in a few lines of assembly language. 
Figure 3.2 depicts MULT instruction executions in RISC architecture 

 



69 
 

 
Figure 3.2 MULTInstruction executions in RISC architecture 

 
A CISC processor is a normal processor, which is embedded with a 

multiply (MULT) instruction. If MULT is executed, it loads the numbers 
(values) into distinctive registers, then carry out the product of the 

operands in the run unit, and then keeps the product outcome in the 
suitable register (Andrade et al., 2014). Hence, the whole work of 

multiplying two values can be attained with just a single instruction: 
 

MULT 2:3, 5:2 
 

3.5 Pipelining  
 

Conventional pipelining is a classic characteristic in RISC processors, 
which is similar to assembly line. Since the processor functions on diverse 

level of the instruction at same period, additional command can be run in 
a little period.  

 

3.5.1 Types of Pipelines 
 

The various types of pipelines in computing include: 
 

i. Instruction pipelines: permit overlapping execution of more than 
one instruction with the equivalent circuitry. It is often categorized 

into phases namely, register fetching, arithmetic phase and 
instruction decoding, in which at every phase processes single 

instruction at a given duration. 
ii. Graphics pipelines: It exist in almost all graphics cards, that 

comprise of more than one arithmetic unit, or whole CPUs, which 
apply the different phases of regular rendering operations that is, 



70 
 

light calculation, window clipping, perspective projection, rendering, 

and color. 
iii. Software pipelines: commands are written in such a way that the 

outcome of single operation is spontaneously employed as the input 
to the subsequent, operation. The UNIX system call pipe as a 

standard instance of the explained concept; even though other OS 
also take advantage of pipes (Hockney et al., 1988). 

 

3.6 Central Processing Unit Security 
  

A number of tamper resistant CPUs are put together such that physical 
efforts to modify or read the data within the CPU may not be achieved 

with no difficulties. The CPU‟s tamper-resistant package guards its 
internal mechanisms, for instance, cache and register from hardware 

attacks. CPU‟s inner cache is large sufficiently, for instance, 10x 

megabytes to accommodate a kernel and the operational set of 
information for almost all programs. However, not large enough to 

accommodate entire programs. Programs that need additional memory 
employ un-trusted exterior memory. What do you think a kernel trap 

handler is? The CPU attached to a kernel while ejecting or fetching a 
cache line. Therefore, kernel attached handler can guard data kept in 

auxiliary (external) memory. This kind of CPU has a matching public and 
private key pair. Meanwhile, the private key is concealed in the CPU and 

not exposed to any user such as software, which executes on the CPU. 
 

The CPU discloses the public key in a CPU certificate that is endorsed by 
the computer company. A consumer trusts a CPU if its certificate is 

endorsed by a trusted computer company. ACPU employs the private key 
to sign and decrypt data, and consumers employ the public key to confirm 

signatures and encrypt information for the CPU. 

 
The framework Build and schedule processes using a kernel on the CPU, 

taking into account the level of the program.  In the kernel, traps and 
interrupts are dealt. The kernel operates in privileged mode; it can write 

or read all locations of physical memory. The kernels are separated into 
distinctive address spaces using page tables. In order to avoid command 

instructions affecting or accessing data in a specific area, the CPU used 
traditional melody defense. This is only possible if the kernel updates the 

page table of all address spaces.  The kernel text and some of its data can 
be avoided  live in the protected CPU to prevent the kernel being abused 

(Wang and Ledley, 2012; Patterson and Anderson, 2013). 
 

The cost of trapping every cache event is dependent on the memory 
access existence and abnormal rate of a program, the costs of 

cryptographic procedures and the level of safety needed by a program. 

The average size of a CPU cache and the hardware-supposed 
cryptographic mechanism is assumed to have decreased. A secure 



71 
 

processor is shown in Figure 3.3. A full operating system is the kernel and  

a collection of user-level servers that enforce OS abstractions. The device 
user can also run VMWare virtualized operating systems in user space. 

The system can report the software and hardware settings of a computer, 
thus a user can make choice on whether the software and hardware can 

be relied on for protecting the system for customers. The CPU determines 
every kernel via the kernel's text content hash and the initialized data 

segment. When the kernel is updated before the device boots, it will 
change the content hash  

 

 
Figure 3.3 A secure processor  
That is because the text and data of a kernel inside the tamper-resistant 

CPU cannot be altered after the boots of the computer, for example, via a 
DMA unit. The entity hash for the kernel is known as the kernel signature. 

In several levels, a stable processor device boots up. The Processor 
calculates the content hash of the BIOS when there is a hardware reset, 

and jumps to the BIOS file. The BIOS then tests the boot loader's content 

hash, which is located in the first sector of the computer's master hard 
drive, and transfers to the boot loader disk. Finally, the kernel signature is 

determined by the boot loader code, and jumps into the corresponding 
kernel. A privileged CPU instruction is used for every stage. A privileged 

CPU instruction is used in each stage for calculating the hash material. 
The instruction preserves the Hash material within the CPU register. The 

registers are held so as not to change their content in malicious programs 
(Wang and Ledley, 2012). 

 

3.7 Virtual Central Processing Unit  
 

Virtual machine is termed as "computer on a computer," which, as if on a 
real physical device, is a completely separated software container that 

runs its own operating system and applications. Unlike a real computer 

device, a virtual machine works with its own virtual RAM, hard drive, CPU, 
and network interface card (NIC). Figure 3.4 shows a virtual machine 

architecture diagram 
 

 



72 
 

 
Figure 3.4 Virtual Machine Architecture Diagram 

  
A virtual Processor is a Processor that uses software-centric host CPU 

resources and functions as a standard CPU. The combination between a 
virtual machine/CPU and a real machine/CPU cannot be accomplished by 

an operating system and software programs or other devices may not be 

reached over the network. Yet a virtual machine is entirely case of a vi 
software and does not contain hardware components. Virtual machines 

therefore offer some unique advantages over physical hardware (Wang 
and Ledley, 2012). 

 
In the virtual machine, many OS environments will co-exist with each 

other on a single computer. The virtual machine will generate a set of 
instructions (ISA) for maintenance, availability, program delivery, and 

disaster recovery that is slightly different from the actual system. VM's 
main features are as follows. 

 
i. It can run multiple operating systems, such as Debian, Windows, 

Mac and the rest, on a single computer. 
ii. It helps in reducing money costs by improving energy efficiency 

through the use of less hardware while also improving your admin 

to server ratio. 
iii. It also guarantees enterprise applications work with maximum 

availability and performance. 
iv. It helps in building up business continuity via enhanced disaster 

recovery resolutions and achieves increased availability all through 
the datacenter. 

v. Enhance enterprise desktop control and management with more 
rapid deployment of desktops and lesser support calls due to 

application disagreement. 
vi. Enhance company system management by speeding up system 

delivery and reducing service calls due to program inconsistencies.  
 



73 
 

Since virtual machines share the host 's general resources, it requires 

more memory and can cause performance problems. 
 

Case Studies 
 

  4.0 Self-Assessment Exercise(s) 
 

1. Which of the following is not a type of instruction? 
A. Memory to memory instructions 

B. Memory to register instructions 
C. Register reference instructions 

D. Register to cache instructions 
Answer: D 

 

  5.0 Conclusion 
 

In this unit, we have studied the processing unit design. From the 
discussion, instruction set, registers, program counters, and flow control, 

reduced instruction set computer, pipelining CPU security and virtual CPU 

has been discussed. Therefore, we have learned the basic design concept 
of the processor unit. 

 

   6.0  Summary 
 
A CPU contains control signals, data, and address. The data buses and 

size ofthe address is often 64 in a 64-bit CPU. Thus, a 32-bit CPU will get 
the highest memory of 232= 22 x 230= 4 GB. 

 
A CPU can take several and varied instructions. A number of instructions 

for example logic instructions can use less time to run than the arithmetic 
instruction. A typical instruction has two parts namely opcode and 

operand. In addition, the addressing method for the operands can be 
indirect and direct. Registers are considered as the fastest memory in 

computer systems. The important registers are; address register, 
accumulator, data registers, status registers, and program counters.  

 

RISC contains very fewer instructions and each and every instruction 
takes one cycle. The aim here is to make instructions to be easy so that 

they can easily be pipelined. This is to achieve a single clock throughput 
at greater frequencies.  

 CMOS VLSI Design Case study:  
Intel Processor 



74 
 

Several researches have been carried out for securing CPUs to evade 

kernel being tampered with. One method to do this is to employ 
encryption by adding a public-private key pair. Virtual CPUs are software-

centered CPUs that employ the resources of the host CPU and behave like 
normal CPUs. The virtual machine can offer an instruction set architecture 

(ISA), which operate likean actual machine. 
 

7.0  References/Further Reading 
 
Coppola, M., Grammatikakis, M. D., Locatelli, R., Maruccia, G., &Pieralisi, 

L. (2018). Design of cost-efficient interconnect processing units: 
SpidergonSTNoC. CRC press. 

 
Patterson, D. A., & Hennessy, J. L. (2013). Computer organization and 

design MIPS edition: the hardware/software interface. Newnes. 

 
Wang, S. P., &Ledley, R. S. (2013). First Edition. Computer architecture 

and security: Fundamentals of designing secure computer systems. 
John Wiley & Sons.  

 
  



75 
 

Unit 2:  Memory System and Design 
 

Contents 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Content 
 3.1 Memory System and Design 

  3.1.1 One Bit Memory Circuit 

  3.1.2 Register, MAR, MDR and Main Memory  
  3.1.3 Cache Memory 

  3.1.4 Virtual Memory 
  3.1.5 Non-Volatile Memory 

  3.1.6 External Memory 
  3.1.7 Memory Access Security 

4.0 Self-Assessment Exercise(s) 
6.0 Conclusion 

6.0 Summary 
7.0    References/Further Reading 

 

1.0  Introduction 
 

In this unit, you will learn the concept of a memory system design of a 
computer. The memory system design includesone-bit memory circuit, 

register (MAR, MDR and Main Memory), cache memory, virtual memory, 

non-volatile memory, external memory, memory access security. 
 

2.0  Intended Learning Outcomes (ILOs)  
 
By the end of this unit, you will be able to: 

 
 Design memory system to solve a specific problem 

 

3.0  Main Content  
 

3.1 Memory System Design 
 

Memory is the major constituent in a computer system. The speed of 
computer relies greatly on the memory capacity of the system. Cost and 

speed are the two essential parameters of memory. A memory system's 
"entry time" requires writing memory time and deleting memory time. If 

you need to create your memory quickly, add a reasonable amount of 



76 
 

circuit to your main memory and use the fastest memory circuit. 

Therefore the memory is costly. The systems' not immediately needed 
programs and data are usually stored in less costly secondary memory, 

such as a hard drive to reduce memory costs. Secondary storage is often 
seen as a storage. When the CPU requires it, data stored in the storage is 

transmitted to the main memory. In this unit we switch from designing 
and creating a one-bit memory to ordering and connecting a big memory 

structure through the memory interface. This unit ends with a review of 
possible threats to memory protection and how to store memory storage 

data (Kolodner, 2014). 
 

3.1.1 One Bit Memory Circuit 
Flash memory is employed for storing documents and photos. Fewer 
individuals have investigated how flash data is stored. Would you like a 

single memory unit and why can it store data without battery 
requirement? Let us first study the memory of a computer. Any device 

such that a data can be read and written is taken as a memory.  
 

In addition, even after reading/writing has been finished, data must be 
processed and stored. Figure 3.5 depict a light bulb, which is one of 

Edison's major findings. Turning K is employed for activating the light, 
which is enabled until the switch has disabled, and then it is disabled 

before the light is re-activated. The analogy is to remember command 

entry from the bulb and switch.  
 

 
Figure 3.5 Light bulb and a switch 
 

However, this device cannot be used in building up a computer because 
every operation requires human contact. Therefore, an electronic switch 

can be used as transistor. Figure 3.5 portrays a circuit which uses a 
transistor as an electronic switch. If the input is considered small, zero 

volts are, thus, no electrical current occurs from point b to a. The transfer 
c to a is disconnected, and the high performance is +5 V. When a high 

voltage is used at the input, then the current from point b to a would be 
available. The switch is therefore ON when there is a relation between c 

and the output is therefore 0V, which is small  
 

The conventional transistor-based electronic switch utilizes an electrical 
current to trigger the component. Thus, it is named the current-based 



77 
 

component. Current-based component depletes a large amount of power, 

it also has heart issues and hence, cannot be carried out on a large scale. 
The subsequent step employs metal oxide semiconductor (MOS), which 

was substituted by complementary metal-oxide semiconductor (CMOS) 
component. Figure 3.6 depicts a simple MOS switch. 

 
Hypothetically, the component of CMOS depletes no current. It is a 

component that is dependent on voltage. Considering CMOS system, it is 
possible to integrate a large number of circuits into a single circuit. Thus, 

it is possible to create an integrated circuit (LSI) of large scale and an 
integrated circuit (VLSI) of very large scale. A great number of processors 

have recently been developed and produced using VLSI technology.  
 

Figure 3.7 depicts a distinct memory cell. It can be considered as one-bit 
memory equivalent to the switch and light bulb. In addition, it could be 

seen as a circuit that neither joins two NOR gates together. Therefore, 

this circuit is named as a flip-flop or an RS trigger. There is set (S) and 
reset (R) as inputs, then Q is the output. The  ̅ is the inverse output. 

 

 
Figure 3.6 Electronic switch made of a transistor and resistors 

 

 
Figure 3.7 Electronic switch made of a MOS component 
 

Assuming that S = 1 and R = 0, because S = 1 in that case  ̅ should be 

0. R and  ̅is now Q = 1. When S now moves to be 1, in order for both S 



78 
 

and R to be 0. Thus, the circuit stays in the state explained above. When 

R becomes 1, then it will force Q to be 0 however, the two inputs S and Q 
to the top NOR gates are zero, in order to make  ̅turn into a 1. This 

situation will also continue. Now we have seen this flip-flop “remembers” 
all the two input signals, S and R. It works just like the aforementioned 

switch circuit and light bulb however, its entire constituent is electronic 
together with the control signal. Hence, this is the concept of a computer 

memory system. Computer memory constitute of billions of this kind of 
memory unit with supplementary circuits signaling and the processor 

(Wang and Ledley, 2012; Ohmaru, 2014). 

 

3.1.2 Register, MAR, MDR and Main Memory 
A unique kind of memory, which is employed to keep a binary value for a 
short term in order to perform basic storage and calculations, is called 

register. It is embedded in the CPU to carry out a particular role (Dumas, 
2006). Contrary to normal memory, every register handles a specific 

operation depending on how it is configured. In relation to speed, the 

register is the fastest probable memory on a CPU-operated computer 
system. Registers are used inside a network in a variety of different ways. 

It can be used to keep this instruction's address running, this register is 
known as the program counter (PC). The Instruction Register (IR) retains 

the key instruction that the machine is running at the time. Status 
register contains various 1-bit registers and each tracks a particular CPU 

state. A Flag comprises of information including negative sign, overflow, 
arithmetic carry, and other vital data that is observed by the control unit. 

A one bit memory constructed using a flip-flop is shown in Figure 3.8 

 
 
Figure 3.8 A 1-bit memory cell constructed by a flip-flop 

 

 
Figure 3.9 Relationship between the MAR, MDR, and memory 



79 
 

 

Random-access memory (RAM) or memory can be separately accessed in 
a random pattern. As mentioned earlier, there are often billions of single 

1-bitmemory units in a computer memory system. A processor uses two 
separate registers to access certain memory modules, namely the 

Memory Data Register (MDR) and the Memory Address Register (MAR) 
(Foster and Iberall, 1985). A memory data register is also referred to as a 

memory buffer register because it houses the data being processed or 
retrieved from the memory location that the memory address register 

actually manages. Figure 3.9 demonstrates the relationship amid the 
MDR, MAR, and memory itself. An address decoder is normally employed 

to decrease the number of addresses needed for the huge amount of 
memory units. For instance, a 32-bit address bus will address 232= 4G 

memory. 
 

For MAR, the maximum bit is named as the most important bit (MSB) and 

the minimum bit is named as the least significant bit (LSB). For MDR, the 
amount of bits that can be accessed simultaneously is known based on 

the register width, which is connected to the processor. Considering 32-
bit data bus, a single instruction can run 32-bit data. Though 64-bit data 

can be processed in a 64-bit data bus in one instruction. A 64-bit machine 
is usually speedier.  

 
Communication between the memory registers and CPU operate as 

follows: the CPU transfer (load) address and data to MAR and MDR 
respectively to store data at a common memory location. In the decoder 

the address is encoded in such a way that based on the MAR address only 
one output is allowed. Then the CPU transmits a signal that enables the 

write line to the memory. The data is then transmitted to the selected 
memory from MDR  

 

The CPU forwards the address to the MAR in order to access and read 
data from a particular location. Interpreting the address, then choose it. 

Afterward the CPU sends a read command, then the data is read to MDR 
from the selected memory position. We may now note that MDR is a dual-

way register with both in and out. Whereas MAR is a single way register 
that also transmits the signal out. You know a 32-bit machine can contain 

up to 4 GB of memory. Generally, a computer that has k bits address in 
width, then the overall amount of memory addresses is as expressed 

below: 
M = 2k 

 
M represents the total likely amount of memory in a computer. For 

instance, an 8-bit processor like Intel 8080 or Z80, the total likely 
memory is 28 = 256. A 16-bit computer should have 216 = 65,536 (64K) 

memory. Additionally, the 32-bit computer should contain a memory 

address, which is up to: 



80 
 

 

232 = 22 x 210 x 210 x 210 

 

4 x 103 x 103 x 103 = 4 x 109 
 

In a 1GB memory, which is about 109 bytes, the entire memory is equal 
to 4G for a 32-bit system. Current computer systems often employ RAM 

as the actual memory. A RAM called Dynamic RAM (DRAM) is used mainly 
on personal systems because it is cheaper and is heavily integrated as it 

has little power usage. DRAM requires being refreshed from time to time 
to evade data loss. However, another RAM called static RAM (SRAM) is 

typically faster than DRAM, with lower incorporation rate. Additionally, it 
more costly thus, it is often observed in servers or unique fast computers 

(Foster and Iberall, 1985; Wang and Ledley, 2012). 
 

3.1.3  Cache Memory  
Knowing that registers are a special type of memory, however, they are 
limited in numbers, which provides the fastest speed. RAM, on the other 

hand, is significantly less expensive compared to registers, and can be 
implemented with easy access in massive quantities. It does have a lower 

speed, though. To bridge the void, the computer system employs another 
form of memory called a cache. Figure 3.10 illustrates computer systems 

memory hierarchy. The memory cache is a small amount of fast memory 

placed between the memory and the processor to bridge the speed limit 
between the main memory and the CPU.  

 
 (Hwang, 1993). The cache is comparatively inferior to the primary 

memory. The cache memory operating procedure is that it pre-fetches the 
data from the main memory and keeps them accessible when needed by 

the processor. If the prediction is correct, the processor receives the data 
directly from the memory of the cache without having to access the main 

memory. It may not be surprising if people ask why cache memory is 
needed and how it works, and how to estimate the data required before 

running a program. For example, look at the “block” concept. Assuming 
you want to add two matrices of M row and N column, you will be 

required to add M N times. If all data is in the cache, it is referred to as 
call read hit, this will save extra time to collect data using the cache as 

opposed to forwarding the address to the address buffer (MAR) and then 

waiting for MDR data with each addition operation.  
 



81 
 

 
Figure 3.10 Memory hierarchy of the computer system 
 

If the data, for which the processor request is not in the cache, happens, 
it is called a read miss. The MAR and MDR are therefore enabled, and the 

data is now read from the actual memory. The estimation algorithm then 
transfers additional adjacent memory position into cache assuming that 

there may also be an immediate request for future data. Statistics show 
that the block data that navigates from the actual memory to the cache 

when a read miss occurs minimizes the overall access time and thus 

increases the speed of the computer. Taking the "block" idea into 
consideration, you can observe the movement of data between cache 

memory and main memory is actually block-based. Whereas moving data 
between cache memory and register is word-based, which depends on the 

data and instructions‟ actual length. A number of processors, namely 
primary and secondary, contain two-level caches. Some recent processors 

have 3 level caches labelled with L1, L2, and L3. At first the processor 
attempts to reach L1 for the data required, if there is a mistake, then it 

transfers to L2, if there is also a mistake, then the data should be 
retrieved from the memory itself. The block chosen from the main 

memory is also inserted in both caches. Figure 3.11 shows a 2 level cache 
system.  

 
 



82 
 

 
Figure 3.11 Two-level cache memory and data transfer 

 
The memory cache increases the performance of a computer program. By 

calculating and moving certain blocks from the main memory to the 
memory cache, the memory access time is greatly improved.  

 

3.1.4  Virtual Memory 
 

By now, you should have understood the significance of the quantity of 
main memory relating to the system speed. It is common to have a lot of 

machine programs to run simultaneously. Thus a great quantity of 
memory is required. However, no matter how big the main memory is, 

the amount of memory required for executing programs that still not be 
enough. Digital memory thus provides programs with a large amount of 

memory as opposed to their physical memory. Occupying part of the 
storage disk, which is slower. As with memory cache, virtual memory is a 

change between the main memory and disk storage. In opposite to the 
memory of the cache, virtual memory does not rely on it and does exist 

alone. It actually used most of the storage disk. The idea of virtual 

memory in a computer system is depicted in Figure 3.12.Virtual memory 
has some common features with a cache memory in terms of improving 

the access speed. Furthermore, it virtually enlarges the primary memory 
in other that programs can possibly execute on a system simultaneously 

without any fear regarding memory constraints.  
 



83 
 

 
Figure 3.12 Computer memory, virtual memory, and disk storage 

 
Meanwhile, the virtual memory is categorized into 2namely, paged virtual 

memory and segmented virtual memory (Wang and Ledley, 2012; 
Dumas, 2006). 

 

3.1.5 Non-Volatile Memory 
Majority of the existing computers use RAM as their main memory. RAM is 

a form of write / read memory that has rapid speed of retrieval and can 
be easily implemented on a large scale. Conversely, when power is off, 

RAM is called volatile, which is, it loses data. Even when power is off, the 
non-volatile memory still holds data. Electrically programmable erasable 

ROM (EEPROM) and flash memory are called non-volatile memories. Flash 
memory card with digital circuits was integrated on a regular bus board. 

Figure 3.13 shows a photo of the non-volatile memory card. 

 
Figure 3.13 Non-volatile memory card invented in 1985 

 
Read-only memory (ROM) is considered as a non volatile however, it is 

not possible to be modified or re-written. A ROM is written one time only 
using a special device is named as Programmable ROM (PROM). A PROM 

in which its data can be erased using ultraviolet light is called Erasable 
PROM (EPROM). Thus, it is not seen to be random write/read. Another 

version of the EPROM is the one that uses electricity to clear the whole 

chip and set to be blank is named EEPROM or E2PROM, which is the latest 
modern flash memory.  

The existing memory cards for mobile phone or digital cameras and USB 
flash drive are the new kinds of non volatile memory centered on E2PROM 

technology with speed between disk drives and primary memory (Nishi 
and Magyari-Kope, 2019; Wang and Ledley, 2012). 



84 
 

 

3.1.6 External Memory 
Another external memory name is supplementary memory, or secondary 

memory. This is storage with high capacities. The external memory is 
typically greater than the principal memory. One can see the normal 

external memory on a computer, often called a hard drive. Network 
storage, USB flash drives and external memory backup drives are all 

considered. In most situations we call storage external memory. Hard 

drives are connected via a System Bus to the CPU. Others are connected 
via serial interface, such as USB flash drives. It takes a lot of time to 

prepare your address and the data needed to communicate with the CPU. 
Hence, the hard drive connected to the CPU is not as fast as the one. 

Offline storage, hard drives, tertiary storage, small computer system 
interface (SCSI), serial advanced technology attachment (SATA), serial 

attached SCSI (SAS), network attached storage (NAS), cloud storage and 
storage area network (SAN) are categorized as external memory (Shiva, 

2000). 
 

3.1.7 Memory Access Security 
Memory space protection is carried out by enabling memory regions to be 
non-executable. In such a way that, any effort to execute machine code 

in those regions will lead to an exception. It employs hardware 
characteristics, for example, NX (non-executable) bit. If the whole or part 

of the writable region of the operating system can be marked as 
nonexecutable, then it will prevent the heap and stack memory areas 

from being run. This principle helps prevent the occurrence of particular 
buffer overflow exploits. Specifically, those attacks such as Blaster worms 

and Sasser which inject and run code. Their attack method relies on some 
memory part, usually the stack, because they are both writable and 

executable. If not, otherwise the attack fails. As stated earlier, in an 

integrated circuit, DRAM keeps data in distinct condensers. To prevent 
data loss, it needs regular refreshments, at about every 64ms. In action, 

memory cell condensers typically keep their values very lengthily, 
particularly at low temperatures. The data in DRAM can be recovered in 

most cases, even if the DRAM happens not refreshed for quite a few 
minutes. 

 
The condenser properties can be exploited by the hackers to recover data 

stored in memory by quickly rebooting the system and depositing RAM 
content. By cooling the chips and transferring them to a completely new 

computer. USB flash drives, another technique is the most useful use of 
external memory for data storage, even sensitive data. The biggest 

downside of this memory is in physical protection. To enforce data 
security, users often employ software/hardware solutions to protection 

data.In the software solution, the protection of the data is usually based 

on encryption. For instance, in the case of USB drive, several programs 
are available for encrypting data transparently and automatically. In a 



85 
 

hardware solution, hardware encryption is embedded. In addition, a 

hardware solution might provide extra attribute By overwriting the 
memory drive data when more than a specific number of trials are 

inputted with the wrong password  
 

Segmentation is an additional method that does not only offer extra 
virtual address however, it offer protection of the information/data kept in 

the memory segments. Thus, the dynamic data structure used for some 
arrays and stacks. However, increasing data structure may bump into the 

subsequent one. When OS uses a single address or in other words assign 
addresses linearly, it could overwrite one another. Consequently, the 

overwritten memory could cause system crashes or breach system 
security. A systematically programmed, overwritten memory that allow 

hackers to control the computer system by stopping services and then 
modifying or stealing data. It's usually seen as a buffer overflow attack.  

 

A buffer is a part of the idea of memory and can be used to store user 
data. For example. In general, buffers have a range of fixed maximum 

sizes. If the user provides extra input that the buffer can handle, then 
additional input may end up in unintended memory locations, so the 

buffer is considered to be in a state of overflow. An execution stack 
monitors, which type of function programs execute at any given time. 

Additionally, what function they require after completing the present 
function to return to. The single address space of the memory is shown in 

Figure 3.14a. This could overwrite the current software as the stack grows 
up. Keeping in mind Figure 3.14b, stack, software, and data are held in 

separate parts. The system segment can be configured to run only and 
the data segment configured to be non-executable. This will fix the 

memory overwriting problem and a variety of issues with buffer overflow. 
Figure 3.15 shows an example. The actual program verifies the password, 

then open ATM if it is correct. The password is now presumed to be 16 

characters long. 
 

 
Figure 3.14 Memory Segmentation and Memory Access Security 



86 
 

   

If the users key-in a password that is greater than 16 characters, then 
the return address will be overwritten back to the actual system. So 

hackers might build a 17th to 20th character in such a way that they are 
exactly the same as the open ATM subroutine address. Hence the ATM will 

still be opened even if the password were keyed-in incorrect. The 17th to 
20th characters created are named as strings of attack  

. 

 
Figure 3.15 Buffer Overflow Attack  

 
Most organizations, for electronic mail and non-vital applications, employ 

cloud services. Marketing and financial data are important data that are 
not normally stored in the cloud. The biggest challenge here is data 

security. Cloud data protection is therefore a very critical and changing 

topic which needs to be addressed (Wang and Ledley, 2012; Chin and 
Older, 2010). However, several solutions have been proposed by the 

researchers in the domain. Yet, there is still a need to explore the 
problems and provide improved solutions. 

 
 

 Discussion   
 

  4.0 Self-Assessment Exercise(s) 
 
1. A unique kind of memory, which is employed to keep a binary value 

for a short term in order to perform basic storage and calculations, 
is called? 

A. Cache 
B. Cookies 

C. Register 

D. Buffer 
Answer: C 

 

The employment of cache is 
very important in memory 
system design, discuss. 



87 
 

2. A …………… is a part of memory concept that can be employed to 

hold user input before saving? 
A. Register 

B. Cache 
C. Buffer 

D. RAM 
Answer: D 

 

  5.0 Conclusion 
 

You have learned how to design a one-bit memory circuit in this unit, and 
have understood how to structure and attach a large memory module 

through the memory interface. We have researched different memories of 
their big benefits for each of them as well. In addition, a number of 

memory protection concerns and how to secure the data stored in 
memory were addressed in this unit. 

 

   6.0  Summary 
 

Different memories were addressed, and a flip-flop was used to create the 
method for designing a simple memory unit.  

 
DRAM and SRAM are normally located within the computer system. They 

are volatile but they deliver rapid pace. However, cache memory is 
typically faster than main memory but low in quantity. It provides useful 

data access to the CPU by predicting and pre-finding the blocks of data. 
Virtual memory is a term that shares some similarities to memory cache 

to expand memory address space and increase access speed. By using 
virtual memory, programs can run at the same time without fear of 

memory limitations. 
 

Data encryption can guard non-permitted data access stored on USB flash 
drive and computers. Hardware protection and encryption can take away 

data when a hacker is attempting to crack the password at any certain 

time. Public clouds offer software, infrastructure, and platforms to 
customers. When moving critical data to the cloud, studies must be 

carried out to guarantee the security of data. 
 

 
 
 



88 
 

7.0 References/Further Reading 
 

Kolodner, J. L. (2014). Retrieval and organizational strategies in 
conceptual memory (PLE: memory): a computer model. Psychology 

Press. 
 

Ohmaru, T. (2014). U.S. Patent No. 8,773,906. Washington, DC: U.S. 
Patent and Trademark Office. 

 
Wang, S. P., &Ledley, R. S. (2013). First Edition. Computer architecture 

and security: Fundamentals of designing secure computer systems. 
John Wiley & Sons.  

 
  



89 
 

Unit 3:  Input and Output Design 
 

Contents 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Content 
 3.1 Input and Output Design 

3.1.1 Direct Memory Access 

3.1.2 Interrupts 
3.1.3 Programmed Input/Output 

 3.1.3.1 Universal Serial Bus and IEEE 1394 
 3.1.3.2 Network Interface Card 

   3.1.3.2.1 Basic NIC Architecture 
   3.1.3.2.2 Data Transmission 

3.1.4 Input/Output Security. 
4.0 Self-Assessment Exercise(s) 

5.0 Conclusion 
6.0    Summary 

7.0    References/Further Readings 
 

1.0  Introduction 
 
Having gone through the memory system design, you will further learn 

the concept of input and output design in a computer system. The unit 

involves discussion of the overview on input/output design, which includes 
direct memory access, interrupts and programmed input/output. The 

Universal serial bus and IEEE 1394, and network interface card are 
discussed in relation to memory design. Afterward, the basic NIC 

architecture, data transmission, and input/output security concepts are 
explained.  

 

2.0  Intended Learning Outcomes (ILOs)  
 

By the end of this unit, you will be able to: 
 

 Evaluate an input and output design 
 

 
 

 

 
 



90 
 

3.0  Main Content  
 

3.1 Input and Output Design 
 
Input and output (I/O) devices are considered to be important as the 

central processing unit (CPU). In respective of fastness of the CPU, it is 
required to take data in and out. In most situations, the destination of the 

data is remote. Thus, data is often moving in and out of a system via a 
network interface that manages the exchange of communication.  

 
The I/O devices involve a number of internal registers. Do you know how 

the internal registers works? These registers are employed for receiving 
data and command from the computer core processor. Conversely, I/O 

devices convey data in a distinct manner. Some data are at very slow 
speed, while others are at high speed. Keyboard feedback is very sluggish 

in velocity. Thus, it will be built in such a way that the CPU does not 

waste time waiting for keyboard input (Haris and Haris, 2019; Wang and 
Ledley, 2012). A universal I/O device diagram is depicted in Figure 3.16. 

 

 
Figure 3.16 Universal I/O Interface Illustration 

 

3.1.1 Direct Memory Access 
When you transport large chunks of data from I/O equipment to main 

memory, consideration must be given to the overhead for any step. 
Conventionally then, data is read into registers, and further written from 

the CPU to the memory. Those processes require two stages. Using direct 
memory access (DMA), data could be written/read straight-away to/from 

memory without the need for communication with the CPU during 
transportation (Dumas, 2006). The DMA manager is controlled by the 

CPU. The processor usually sends data transfer instructions to the DMA. 
In generality, CPU forwards I/O device numbers, number of bytes and 

memory start address to the DMA controller. Once this is done the 
remaining task is accomplished by the DMA controller. Once all the data is 

read it will cause the forwarding pending. The I/O memory writing process 

is the same except data transmitted in a reverse direction. In the case, if 
the forwarding is finished by the DMA controller then there is an interrupt 

signal to inform the CPU. A typical DMA system also includes an address 



91 
 

register (AR), a data register buffer (DR) and a word counting register 

(WCR). Figure 3.17 depicts the different I/O diagrams.  
 

 
Figure 3.17 I/O Diagrams (a) I/O Data Exchange without DMA, 

(b) I/O Data Exchange with DMA and (c) Architecture Diagram of 
a DMA 

 
 

 
Figure 3.18 DMA Handshake Process 

 
(a) Demonstrate an I/O data swap with no DMA (b) display I/O data swap 

with DMA and (c) DMA architecture; Transportation of DMA data involves 
a handshaking procedure. At first, on the DMA side, the CPU initializes the 

AR and WCR, first, it verifies whether WCR=0. If yes, this means the 
transition is complete. DMA must forward a message to the CPU for an 

interrupt. If WCR ≠ 0, then the DMA starts transmitting data. The word-
count at every iteration Register reduces by one, and the list of addresses 

decreases by three. WCR WCR-1, for example. AR AR + 1. The data 



92 
 

continues to move until WCR = 0. Figure 5.18 indicates a handshake 

method with DMA. . 
 

3.1.2 Interrupts 
Processor usually run programs without interrupts. In a number of cases, 

the processor might be interrupted due to the external circumstance to 
manage several urgent tasks (Haris and Haris, 2019; Foster and Iberall, 

1985). Do you know the circumstances that could lead to the trigger of 

interrupts? The following are unique situations: 
o Software requests 

o Buffer overflow or underflow 
o Power failure 

o System reset 
o unlawful instruction code 

o When DMA data transmission completed. 
 

The interrupt managing process initially keeps the present program 
counter +1 to a stack and afterwards jumps to the interruption services 

process. The interruption service schedule often carried out the following 
functions. 

o Handle the interrupt 
o Recover from the interrupt 

o Explored the stack and fetch the recovered address: PC+1 

o Move to PC+1 
 

In the course of keeping the processor condition, the processor might 
disable further interrupts so as to avoid status change. 

 

3.1.3 Programmed Input/Output 
An instance of standard I/O devices includes a keyboard, display, printer, 

and mouse. The interface, which links to the registers in CPU are 
developed for a single reason. It is similar to a mouse and keyboard that 

cannot be placed wrongly on PS/2 interfaces. In several situations, users 
desire to have an all-purpose I/O module, which could either be 

configured to input or at other time configured as an output, which relies 
on the application. CPU first informs the I/O module the type of function it 

desires it to be, and then send the data.  
 

A programmed input/output module (PIO) is a concept in which all 
functions are set by instructions. The illustration of PIO connected to a 

CPU is depicted in Figure 3.19. The I/O address and data registers 
function alike as MAR and MDR. Both use a single bus, as the memory 

does. We have two I / O port mapping processes: 
i.  Input / output coded memory mapping of I/O ports to set aside the 

memory address space.  

Processors writing to an I/O port in this process are close in writing 
to the memory  



93 
 

ii.  Isolated mapping of input/out does not use any memory space. This 

employs a distinct speed of I/O emails. A large number of Intel 
processors, for example, work with isolated mapping. Inside the 

isolated I/O system, specific I/O instructions are required to access 
I/O devices. Systems built and developed with processors that 

support the isolated I/O have the flexibility to use isolated I/O or 
I/O mapped by memory. For instance, a monitor, keyboard and 

mouse are often mapped to I/O space whereas a video card might 
be assigned to block of a memory address via employing memory 

mapping interface (Wang and Ledley, 2012). 
  

 
Figure 3.19 Programmed I/O 
 

3.1.3.1 Universal Serial Bus and IEEE 1394 
In 1995 the Universal Serial Bus (USB) was created. The main intention of 
the USB was to define an external expansion bus that would make it as 

easy to connect peripherals to a device as to link up a phone to a jack. 
 

.Considering the introduction of USB, computer users can connect printer, 
mouse and keyboard, external memory, hard drives, and camera. The 

attachment of devices to the USB port can accommodate up to 127 
devices. The USB port is designed to avoid setting jumpers and 

configuring new computers. Users can also hot-plug the USB devices and 

the program will automatically detect and configure the devices for 
immediate use. The benefits of USB meanwhile include power delivery, 

expandable, and power conservation. The USB architecture includes host 
hardware, consisting of root hub and USB host controller. The host 

controller generates transmissions over the USB while the root hub 
provides the points of contact. Figure 3.20 displays USB architecture. A 

host controller interface (HCI) is known to be a register level interface 
that enables the hardware of the host controller to communicate with the 

operating system of a host computer. There exist 3 types of USB host 
controller interface (Chrysanthakopoulos, 2013; Wang and Ledley, 2012).  

o Open HCI (OHCL) 
o Universal HCI 

o Enhanced HCI 



94 
 

 
Figure 3.20 USB Host Controller, Root Hub and Hubs 

 

3.1.3.2 Network Interface Card (NIC) 
The NIC is considered as a computer hardware component that allows a 

device to be linked to a machine and a device. Using a specific connection 
layer and physical layer standard, for example, Ethernet or Wi-Fi, a NIC is 

embedded with the electronic circuitry required for communication. This 
provides a foundation for a complete network protocol stack, which 

facilitates communication between small computer sets on the same local 
area network. For large computer sets, network communication is done 

via routable protocols, such as IP. 
 

That and every Ethernet network handler has a specific 48-bit serial 

number called MAC address which is stored for add-on cards in read-only 
memory embedded in the card. It's fair to assume that two network 

controllers with the same address will not exist. The Institute of Electrical 
and Electronics Engineering (IEEE) stipulates this requirement at the time 

of fabrication. Ethernet network controllers typically support variations of 
10Mbit/s Ethernet, 100Mbit/s Ethernet, and 1,000Mbit/s Ethernet. Those 

controllers are designated 10/100/1000 which means they can accept a 
notional maximum rate of transfer of 10, 100 or 1000Megabits per second 

(Hwang, 1993). 
 

3.5.1 Basic NIC Architecture 
As mentioned in Section 3.5, the NIC enables computer communication 
over an Internet network. It is related in both link and physical layer, 

which is OSI layer 2 and 1 respectively. It offers physical access to a 
networking medium, and a low-level addressing system through the use 

of MAC addresses. It allows computer users to link to each other through 
wireless or use cables. Most NICs have the device, memory, control logic 

and medium access control (MAC) DMA interface (Patterson and 
Hennessy, 2013; Wang and Ledley, 2012). 

 



95 
 

 
Figure 3.21 NIC Architecture Block Diagram 

 

3.5.2 Data Transmission 
NIC allows frames (data) to be transmitted and received between network 
and host operating system. Frames are received and submitted within a 

sequence of steps performed by the host and NIC. The host operating 

system (OS) usually managed a series of buffers which are used for 
headers and contents of frames. The OS also maintains a queue or ring of 

descriptors to the buffer. Each buffer descriptor specifies the place a 
buffer resides in host memory and it size of the buffer is (Patterson and 

Hennessy, 2013). 
 

3.6 Input/Output Security 
 
What are the three applications of security in I/O devices? I/O security 

typically varies from security of application to physical protection and 
security of service. Security threats could negatively impact all devices 

used for input and output. An unlocked keyboard is an example of 
physical protection. An unencrypted hard drive can disclose sensitive 

information to unauthorized users. The following measures can be 

employed for securing I/O devices (Wang and Ledley, 2012). 
 

o Disabling certain key combinations 
o Anti-glare displays 

o Adding password to the printer 
o Disabling bootable USB port 

o Encrypting hard drives 
 

 

 Discussion   
 

 

List and discuss the input/output 
devices you use in your office 
computer or personal computer 



96 
 

  4.0 Self-Assessment Exercise(s) 
 

1. What is DMA?  
A. Dynamic Memory Access 

B. Direct Memory Access 
C. Domain Memory Access 

D. Duration Memory Access 
Answer: B 

 
2. What are the three applications of security in I/O devices? 

A. Application security 
B. Physical security 

C. Operation security 
D. Technical security 

Answer: A, B, C. 
 

  5.0 Conclusion 
 

We examined the various types of input and output devices within this 
package. I/O systems have a set of internal registers. The registers are 

used to get instruction and process data. When using DMA technology, 
data transmission between I/O devices and memory can be directly 

achieved without the need for CPU resources. To address the low-speed 
problems that can slow down CPU operations in certain cases, interrupts 

are then used to prevent I/O devices from occupying CPU until the I/O job 
is complete or their I/O buffer register is complete. 

 

   6.0  Summary 
 
The I/O devices include USB (connecting printer, keyboard, etc.) and 

network interface card. USB is a basic I / O connector and on many I / O 
applications it has become a touchstone port. The USB 3.0 will send and 

receive data at a speed of 400 MB/s. The Network Interface Card (NIC) is 
considered to be a special I/O device that regulates the transmission of 

data over the network. An MAC address is given to each and every NIC, 

which is a distinctive address for identifying devices on the Internet. 
However, some computer expatriate has a reservation on classifying the 

NIC as an I/O devices, because of its importance and special applicability. 
Further, NIC is different from regular I/O devices such as a mouse, 

printer, display and keyboard. 



97 
 

Conventional I/O security problems aren't difficult to handle. Network-

related security is, however, a very complicated and detailed subject, 
which has attracted much interest in the research community. 

 

7.0  References/Further Reading 
 

Wang, S. P., &Ledley, R. S. (2013). First Edition. Computer architecture 
and security: Fundamentals of designing secure computer systems. 

John Wiley & Sons. 
 

Chrysanthakopoulos, G. (2013). U.S. Patent No. 8,412,508. Washington, 
DC: U.S. Patent and Trademark Office.. 

 
Patterson, D. A., & Hennessy, J. L. (2013). Computer organization and 

design MIPS edition: the hardware/software interface. Newnes. 

 
 

Virtual Lab Activities 
The following activities are provided for the 3 units explained in this 

module 
  

1) Processing unit design 
In designing a microprocessor unit, the following general steps for logical 

process flow need to be considered. 
a) Determining the required capabilities of the processor 

In determining the required capabilities of the processor, the 
following questions need to be answered. 

i) What are the limitations in terms of speed, price, power and 
or resources? 

ii) Is the chip a general purpose, or an embedded chip or a 

varied type entirely? 
iii)  Does the chip have vector and scalar operation capabilities? 

iv) Does it have floating point, integer or point arithmetic, or the 
integration of all three? 

v) Will the chip support interrupt? 
vi)  Is the chip self-contained, or must it interface with several 

external peripherals? 
Further, there is a need to consider if the processor chip will consider wide 

range of instruction. These instructions might include; 
i) Addition/subtraction ii) Multiplication iii) Division iv) Shifting and 

rotating v) Logical operations: NOT, XOR, NOR, OR AND, etc. vi) 
Conditional jumps vii) Unconditional jumps  viii) Stack 

operation: pop or push.  
b) Layout the data path that will handle the needed capabilities. 



98 
 

In designing the data path, we need to define what the ALU architecture 

need to use; 
i) Accumulator ii) Stack iii) Register iv) A combination of the above 3 

c) Determine and state the machine code Instruction Set Architecture 
(ISA) format 

 
When the basic data path is designed, then we need to create the ISA. 

Thus, the following need to be considered; 
i) What will be the length of the machine word? 

ii) How to handle the immediate values? 
iii) What types of instructions can take immediate values? 

iv) Is the processor CISC or RISC?  
d) Build the required logic in order to control the data path. 

 
Once we have our ISA and data path, we can begin to build the logic of 

the basic control unit. The control unit is actually implemented as finite 

state machine. Thus, we can try to map the ISA to control unit in a logical 
way. 

 
 Memory system design 

In the memory system design, the basic sequential design using flip flop 
concept need to be employed. In this light, the following steps are 

considered. 
i) Need to obtain circuit state diagram from the design specification 

ii) Generate a state table 
iii) Select flip flops 

iv) Generate circuit excitation table 
v) Build K-maps for: flip flop inputs and primary inputs 

vi) Get a minimized SOP equations 
vii) Draw logic diagram 

viii) Simulate to verify design and debug as required 

ix) Conduct circuit analysis and logic optimization. 
 

 Input and output design 
When designing an I/O mechanism the input and output design interface 

is very important. I/O interface is driven by a processor, which is 
communication via bus. Thus, the following need to be considered in the 

design. 
i) The required logic need to be built for interpreting the devices 

address created by the processor. 
ii) There is need to implement handshaking for the I/O interface based 

standard commands e.g. READY, BUSY and WAIT 
iii) The interface must be able to convert parallel form to serial data 

and vice versa, in the case of exchanging different data formats via 
an I/O interface. 



99 
 

iv) The interrupt mechanism needs to be built for the I/O interface 

design to avoid large idle time while waiting for data from input 
device. 

 
There are other I/O concepts including channel I/O, Port-mapped I/O and 

direct memory access in memory design. 
  



100 
 

Module 4: Security Design Principles 

 

Module Introduction  
 
This module introduces you to the secure component design of the 

computer system. discuss thefundamental principle of secure design, the 
principle ofsoftware security, design principle for protection mechanism 

and trusted computingbase. 

 
Unit 1: Principles of secure design 

Unit 2: Principles of software security 
Unit 3: Principles of protection mechanism 

Unit 4: Trusted security base 
 
 

Unit 1:  Principles of secure design 
 

Contents 
1.0 Introduction 

2.0 Intended Learning Outcomes (ILOs) 
3.0 Main Content 

 3.1 Overview 
  3.2.1 Attack surface 

  3.2.1 Elements of principles for secure design 
4.0 Self-Assessment Exercise(s) 

5.0 Conclusion 
6.0 Summary 

8.0 References/Further Reading 
 

1.0  Introduction 
 
In this unit, you will learn the fundamental principles for secure design in 

a computer system. The unit includes an overview of the principles of 

secure design, followed by an explanation on attack surface and elements 
of the principles.   

 

2.0  Intended Learning Outcomes (ILOs) 
 

At the end of this unit you are expected to be able to carry out the 
following: 



101 
 

 

Design security from the start and should be able to structure the 
security-relevant features 

 

3.0  Main Content  
 

3.1 Overview 
 
It is almost a daily happening that we hear from the news regarding the 

organization computer attack. The security organization is rapidly rising 
and awareness is also increasing. However, there are still several cyber 

attacks occurrence. So how does this keep happening? The possible 
answer to this question might not be easily integrated into a single 

concept. Because security is a multifaceted concept, and also the causes 
of security collapse are complex. Nevertheless, there is a general point 

that drives the security breakdown, which is ineffective adherence to 

secure design principles. In the next section, we will discuss the 
fundamentals of an attack surface. 

 

3.2  Attack surface 
 

Having considered the overview regarding security, we are going to 
discuss the attack surface in relation to the principles of secure design. Do 

you know what attack surface is? Well, the attack surface is considered as 
the set of possible ways an application can be attacked. It is employed in 

measuring the attack-ability of a system (Chapple et al., 2018).  
o The bigger the attack surface of an application, the more probable 

an attacker is to take advantage of its vulnerabilities and the more 
damage is likely to result from the attack. 

o Contrast to measure vulnerability by keeping track of a number of 
reported security bugs. 

o Both the size of the attack surface and a number of security bugs 

are useful for measuring security however, they have different 
meanings. 

 
Attack surface reduction 

o Minimize code that executes by default, by disabling features that 
not all users need. 

o Provide restriction to who can access the code, by demanding for 
authentication to access and request only admin to access unsafe 

functions. 
o Reduce right (privilege) level of code, by preferring code running as 

the user to admin and prefer to Set Group ID (SETGID) and Set 
User ID (SETUID) 

 



102 
 

3.2.1 Elements of principles for secure design 
In this subsection, I will take you through those elements that are related 
to the principles of secure design. These concepts include build protection 

from the outset, allow potential security changes, reduce and separate 
security power, use the least privilege, layout the safety-related features, 

render security friendly and do not rely on security secrecy (Chapple et 
al., 2018). 

 

i. Design security from the start 
At the design stage, you need to consider how to architect defenses. 

These defenses must be integrated at the foundation level of the design. 
Emphasis should be made and analyze why a certain system exists, for 

which subjects, for what task purpose and thus, which resources will be 
accessible through the system. Then decision is made that best combine 

the relevant secure design principles into the system design (Conklin et 
al., 2015).  

 
ii. Allow for future security enhancements 

The system needs to be designed in such a way that, it can accommodate 
continuous security improvement for a long period of time. Security is an 

ongoing procedure that never ends. Adversaries would invent fresh 
techniques, previously unknown vulnerabilities in extensively used 

components will be discovered, and the regular development of fresh 

features will all integrate to continually change the attack surface. 
Therefore, you need to design a system that is flexible to modification.  

 
iii. Minimize and isolate security control 

In the secure design, you need to reduces the amount shared systems by 
extra of one user (subject) to gain access to the data resources (objects). 

In addition, you need to inhibit communication and encapsulate the 
system components. The security control of the system should be 

secluded from other component code of the data. For instance, serving an 
application on the Internet give room to both users and attackers. It 

enables them to share the Internet in order to achieve access to the 
system application. If it happens that the attackers launch a distributed 

denial of service (DDOS) attack and overload the application, the 
legitimate users will be unable to access the application. In another 

example, providing the same login page for customers, partners, and 

employees to login to your company portal, the login page should be an 
architect to the satisfaction of every user. However, based on this 

principle, the idea would be to implement different login pages for a 
different type of users.  

  
iv. Employ the least privilege 

 
It is important to minimize the number of rights to be assigned to a 

system (subjects). The subject should only have the right required to 



103 
 

finish a task. The default function should lack access. If access is required 

temporarily, then it should revoke right after task completion.  
 

v. Structure the security-relevant features 
The security-related features should be ordered in an advantageous way 

during the security design. Partially organized dependencies say that 
synchronization calling and other device dependencies will be structured 

in part. The fundamental method in the design of the system is layering, 
whereby the system is organized into functionally interrelated modules or 

components. And the layers are organized linearly in spite of inter-layer 
dependencies. However, the structural design concepts influence the core 

device architecture because of the manner in which the components bind 
to each other and the nature of their interfaces. 

 
vi. Make security friendly 

In the security design of a system, the security should not negatively 

affect subjects who adhere to the rules. Do you know that a complex 
security system could lead to unfriendly security system? Well, the 

system should be simple for subjects to provide and restrict access. The 
established defaults must be reasonable. A secure system that is not 

simple will be cumbersome. Thus, the system will be complex and difficult 
when trying to enhance the system in future. 

 
vii. Do not depend on secrecy for security 

You must recognize that system security credibility can not be based on 
implementation confidentiality. The principle of safe design does not, 

however, rely on the ignorance of potential attackers. The secure design 
must be carried out in such a way that, the secure concept is decoupled 

from the protection keys. This help in allowing the secure system to be 
assessed by different reviewers without concern that the review 

conducted might compromise the security (stalling et al., 2012).  

 

 Discussion   

 
 

  4.0 Self-Assessment Exercise(s) 
 
1. The integrity of system security should not depend on? 

A. The secrecy of the design. 
B. Architecture  

C. Program design 
D. Review 

Answer: A 
 

Discuss on the possible 
attack surface of Nigeria 
banking industry.  



104 
 

  5.0 Conclusion 
 

In this unit, we have studied the principles of secure design, which are 
the concept employed in the secure design of a computer cybersecurity. 

The main aim of the principles is to enhance the security of a system by 
achieving the three major keys concepts of secure computing. You can 

believe with me that, in the process of learning the course unit, we have 
seen that most of the principles are human perceptional-based ideas, 

which have proven to be useful in attaining software security design.  
 

6.0  Summary 
 
Design principles for a secure system, are considered as those rules that 

assist in achieving the three concepts of security. These concepts include 
integrity, confidentiality, and availability. The attack surface is the 

possible ways an attack can be carried out on the system, which is based 
on the level of vulnerabilities. Further, the related elements of the 

principles for secure design are discussed.   

 

 7.0 References/Further Reading 
 

Chapple, M., Stewart, J. M., and Gibson, D. (2018). (ISC) 2 CISSP 
Certified Information Systems Security Professional Official Study 

Guide. John Wiley & Sons. 
 

Conklin, W. A., White, G., Cothren, C., Davis, R., & Williams, D. (2015). 
Principles of computer security. McGraw-Hill Education Group. 

 
Schroeder, M. D., Clarck, D. D., and Saltzer, J. H. (1977). The Multics 

kernel design project. Proceedings of Sixth A.C.M. Symposium on 
Operating System Principles pages 43– 56. 

 

Stallings, W., Brown, L., Bauer, M. D., & Bhattacharjee, A. K. (2012). 
Computer security: principles and practice (pp. 978-0). Upper 

Saddle River (NJ: Pearson Education. 
  



105 
 

Unit 2:  Principles of software security 
 

Contents 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Content 
 3.1 Overview 

  3.1.1 What are principles of software security? 

  3.1.2 Elements of principles of software security 
4.0 Self-Assessment Exercise(s) 

5.0 Conclusion 
7.0 Summary 

7.0 References/Further Reading 
 

1.0  Introduction 
 
Having understood the principles of secure design in unit 1 of this module, 

we now need to go through the fundamentals of principles for software 
security. The unit comprises of overview, what are principles of software 

security, and the elements of principles of software security.   
 

2.0  Intended Learning Outcomes (ILOs)  
 
At the end of this course unit, you are expected to be able to carry out 

the following: 

 
Manage real-life problems from security threats. 

 

3.0  Main Content  
 

3.1 Overview 
 
The description of computer security at a high level is seen as a 

continuous process of dealing with the 3 key concepts of software security 
on multiple layers of the system. Do you know the major key concepts of 

software security? Well, this has been mentioned in the introduction of 
module 4 of this course. By the way, the key elements include availability, 

confidentiality, and integrity.  Integrity in a software program is the 
concept of ensuring that only permitted subjects can access and operate 

on software information only by approved methods and processes. For 
example, the software security concept allows sales personnel to update 



106 
 

only their own leads within the system in a lead management application. 

Though, sales manager will be able to track and update all leads. If every 
sales staff can update all the leads or someone else, then there will be 

integrity violation (Gegick and Barnum, 2005a). 
 

Confidentiality in the software system can be considered as an idea of 
avoiding unpermitted access to certain software tools or information. If 

the confidentiality concept is built-in a software system, only the 
permitted information/tools would be accessible. For example, looking at 

the sales lead management that is well secured, each sales personnel 
cannot access or even update someone else‟s lead, thus we can say that 

the system is confidential. The other sales personnel should not know 
regarding the leads let alone accessing it. 

 
The idea of allowable objects being able to reach and use the program at 

any time is included in the applications. Let's dig at the recruitment 

system for selling leads. When software system is running on a web 
server so Internet Protocol (IP) limitation may be placed in order to limit 

access to the software system depending on the IP address requested. If 
all sales staff were to access the information network from the 

192.168.1.20 IP address in this situation, so refusing access from all 
other IPs would have to ensure that unauthorized access to the system is 

stopped until the correct subject may access the system from an 
approved location. Essentially, if the requesting subject does not come 

from a authorized IP address then the device may appear to them 
inaccessible. This is one way of verifying where a program is accessed 

(McLaughlin and Gogan, 2018). 
 

The number of principles of software safety design has been described as 
useful when incorporating security concepts into the software framework. 

These principles of various strategies allow systems to achieve key safety 

elements based on general architectural models. 
 

3.1.1 What are the principles of software security? 
Security of the expression may have many definitions, depending on the 

sense and perspective in which it is used. Security from the 
system/software design and development point of view is seen as the 

ongoing process of managing the integrity, availability and confidentiality 

of a sub-program, program, and system data.  
 

The description of computer security at a high level is seen as a 
continuous process of dealing with the 3 key concepts of software security 

on multiple layers of the system. The term principle is considered a 
fundamental truth. Thus, principles of software security are those 

concepts upon which software is implemented for it to be resilient against 
attack. 

 

https://www.us-cert.gov/bsi/about-us/authors/michael-gegick
https://www.us-cert.gov/bsi/about-us/authors/sean-barnum


107 
 

3.1.2 Elements of principles of software security  
In this subsection, I will take you through those elements that are related 
to the principles of software security. These principles include secure the 

weakest link, practice defense in depth, fail securely, follow the principle 
of least privilege, compartmentalize, keep it simple, promote privacy, 

remember that hiding secret is hard, be reluctant to trust and use your 
community resources (Williams, 2019). 

 

i. Secure the weakest link 
Typically, experts need to prove that security is seen as a chain; and just 

as a chain, it's just as strong as the weakest link. So the protection of 
software is only as strong as its weakest part. Attackers focus on the 

simple aim, rather than attempting to break encryption by going to 
endpoints. They'll try to crack an application detectable through the 

firewall, for example, rather than the firewall itself. Knowing when the 
weak spots of a software system have been reinforced will mean to a 

software vendor that the system is well protected enough for use (Gegick 
and Barnum, 2005b). 

Let me give you another example in a real-world security issue. It is 
generally known that there is more money stored in a bank than in a 

grocery store, which one did you think arm robbers might likely attack? 
The grocery store, because the banks are equipped with stronger security 

precaution in term of tools and personnel. The grocery store, therefore, is 

seen as a much easier target. The payoff for successful robbery of a 
grocery store is of course much lower than attacking (robbery) a bank. 

Yet it could be much easier to run from the crime scene of the grocery 
store. You then need to find weak links and toughen them before a 

reasonable level of risk is reached. 
 

ii. Practice defense in depth 
Using complex defensive strategies to escape complete compromise if one 

layer turns out to be inadequate, then another layer would be able to 
prevent complete compromise. The theory of security in-depth design is 

an idea of layering resource access permission verification into a software 
framework that decreases the possibility of a successful attack. In the 

layered resource system (object), authorization allows unauthorized 
subjects to bypass any attempt at permission to access a resource 

(McLaughlin and Gogan, 2018). 

For example, firewall to guard subnet, meanwhile, information on the 
subnet is encrypted. In another example, instead of allowing a user to 

login with just a username and password, you could use a Captcha 
system, an IP check, brute force detection logs of their login attempts and 

so on (Stalling et al., 2012). 
 

 
 

 

https://www.us-cert.gov/bsi/about-us/authors/michael-gegick
https://www.us-cert.gov/bsi/about-us/authors/sean-barnum


108 
 

iii. Fail securely 

The software designed should be secured even when it failed. This will be 
able to deny unauthorized access that wants to take advantage of the 

failed software. 
 

There are several reasons that could make a web application to fail when 
processing transaction. Probably, a database link failed, or the data 

inserted from a subject is incorrect. This principle of software security 
states that applications should fail in a secure manner. Failure of the 

system should not provide the subject with additional rights, and it should 
not depict the subject critical information such as database queries or logs 

(Conklin et al., 2015). 
 

iv. Follow the principle of least privilege 
In the design principle of secure software, you must make sure that only 

the minimum access level required for completing a task is assigned to a 

subject. Further, only the minimum amount time requirement is allotted. 
For example, a subject who signed up to a blog application as an “author” 

must not have administrative rights that allow them to remove or add 
subjects. Subjects should only be allowed to post news to the application 

(Carroll, 2014).  
 

v. Compartmentalize 
The building block of simple access mechanism is not nothing in terms of 

complex access. Reduce the amount of damage that can be done by 
breaking the device up into units. Very few operating systems divide the 

systems into units, because it is difficult to control and manage. Root 
privilege is an example of how things should not be done (Schumacher et 

al., 2013). 
 

vi. Keep it simple 

In the secure software design, there is a need to make the 
implementation as simple as possible. Because complex design is often 

not easy to understand and maintain in the case of error occurrence 
(Schumacher et al., 2013). 

 
vii. Promote privacy 

In the secure software design, attempt not to do anything that 
compromises the privacy of the subject. The privacy should be promoted 

because it is often tradeoff against usability. For example, enabling the 
system to forget credit card number after use. Meanwhile, subjects hate 

having to type it in every period. The privacy need also to be extended to 
code and the system. Thus, there is no need to provide more information 

than necessary. 
 

 

 



109 
 

viii. Remember that hiding secret is hard 

Security via obscurity is a poor security control and is close to constantly 
fail when it happens to be the only control. This does not mean that 

keeping secrets is a poor concept; it merely means that keeping 
information confidential does not depend on the reliability of key systems. 

The protection of a software program, for example, must not be 
dependent on knowledge of the source code being kept secret. Protection 

will rely on many other factors, including security depth, business 
transaction limits, sound network design with password policies, and fraud 

and audit controls. A practical example is Linux, its source code is widely 
available and yet Linux is a resilient, secure and robust operating system 

when properly secured (Conklin et al., 2015). 
 

ix. Be reluctant to trust 
Instead of making conclusions that must be true, you would be hesitant 

to expand the trust. In some situations, it is prudent not to trust yourself. 

Just because a certain security characteristic is a promising standard does 
not mean that it really makes sense. 

 
A loyalty service company, for example, offers data that Internet Banking 

uses, makes available the amount of incentive rates, and a short list of 
potential redeemable goods. Nonetheless, the data must be reviewed to 

ensure the end subjects are safe to present. The reward values are also a 
positive figure, and not impossible to be high (Bertino, 2005). 

 
x. Use your community resources 

In designing secure software, repeated use of the application promotes 
trust. Also, public scrutiny promotes trust. Thus, you need to first of all 

test the software by providing it to the community. So that subjects can 
use and report on the security loop holes (Saltzer, 2011). 

 

 Discussion   
 

  4.0 Self-Assessment Exercise(s) 
 
1. In the secure software design, there is a need to make the 

implementation as simple as possible because: 
A. Repeated use of the application promotes trust. Also, public 

scrutiny promotes trust. 
B. Because complex design is never easy to understand and 

maintain in the case of error occurrence.  
C. Attempt not to do anything that compromises the privacy of 

the subject 
Answer: B 

Assuming you are a security expert, and you have 
been employed to study, identify and strengthen 
the weakest links in a software system. Discuss 
how will you intend to achieve that?   



110 
 

2. Which of the following is correct about the design principles of 

secure software? 
A. Repeated use of the application promotes trust. Also, public 

scrutiny promotes trust. 
B. It is prudent not to trust yourself. Just because a certain 

security characteristics is a promising standard does not mean 
that it really makes sense 

C. The privacy should also extend to code and the system. 
D. The security must depend on many other factors. 

Answer: A 
 

  5.0 Conclusion 
  
In this unit, we have studied those security design principles that are 

integrated into the software development concept. The complete aim of 
the principles is to improve or achieve the three major keys of secure 

computing, which include integrity, confidentiality, and availability. You 

can believe with me that, in the process of learning the course unit, we 
have seen that most of the principles are human perceptional-based 

ideas, which have proven to be promising in achieving software security 
design.  

 

   6.0  Summary 
 
The architects and developers need to consider the perimeter of the 

security requirement when designing and implementing a system that 
needs to satisfy a security quality attribute. Even, the least needed 

protection features need to be considered. However, not every system will 
continue to follow all the fundamentals of the concepts of security 

architecture, but can use one or more variations. That is dependent on 
the standard for software protection set by the client and programmer as 

the inclusion of protection in a system introduces an additional layer to 
the whole system, which may have a detrimental effect on performance.  

 

That is the reason it requires the idea of a minimum security requirement 
when constructing a program. That the quality features must be listed 

alongside the other quality features of the information program, so that 
the program in question obeys all values dependent on the quality 

preferences. The ten principles of information security architecture have 
also been outlined and deemed to be the frameworks used in the 

achievement of protected applications.  
 



111 
 

7.0  References/Further Reading 
  

Carroll, J. M. (2014). Computer security. Butterworth-Heinemann 
 

Conklin, W. A., White, G., Cothren, C., Davis, R., & Williams, D. (2015). 
Principles of computer security. McGraw-Hill Education Group. 

 
Barnum, S. and Gegick, M. (2005). Least Privilege. Retrieved on August 

28, 2011 from https://buildsecurityin.us-cert.gov/bsi/articles/ 
knowledge/principles/351-BSI.html. 

 
Gegick, M. and Barnum, S. (2005). securing the weakest link: revised 

2013: digital, Inc. 2005-2007. Digital retains copyrights to this 
material) (https://www.us-cert.gov/bsi/articles/knowledge/ 

principles/securing-the-weakest-link). 

 
  

https://buildsecurityin.us-cert.gov/bsi/articles/%20knowledge/principles/351-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/%20knowledge/principles/351-BSI.html
https://www.us-cert.gov/bsi/about-us/authors/michael-gegick
https://www.us-cert.gov/bsi/about-us/authors/sean-barnum
https://www.us-cert.gov/bsi/articles/knowledge/%20principles/securing-the-weakest-link
https://www.us-cert.gov/bsi/articles/knowledge/%20principles/securing-the-weakest-link


112 
 

Unit 3: Design principles for protection 
mechanism 

 

Contents 
1.0 Introduction 

2.0 Intended Learning Outcomes (ILOs) 
3.0 Main Content 

 3.1 Overview  
 3.2 Principles for protection mechanism 

3.2.1 Elements of principles for protection mechanism 
4.0 Self-Assessment Exercise(s) 

5.0 Conclusion 
6.0 Summary 

7.0    References/Further Reading 

 

1.0  Introduction 
 

In unit 2, we have studied those principles that are related to software 
design. We now need to go through the fundamentals of principles for 

protection mechanism. The unit comprises of overview, what are the 
principles of protection mechanism, and the elements of principles for a 

protection mechanism.   
 

2.0  Intended Learning Outcomes (ILOs)  
  
In this unit, you are expected to be able to do the following: 

 
 Design principles to manage specific real-life scenarios 

 

3.0  Main Content  
 

3.1 Overview 
 

Protection mechanisms of a system are concepts used for regulating 
rights of a subject for accessing objects of the system. The mechanisms 

are general expected to have stringent restrictions and to be simple. For 
the restriction, it is by minimizing interactions/ access and by inhibiting 

communication. In terms of simplicity, it should be easy to understand, 
fewer inconsistencies and less wrong. The fundamentals of principles for 

the protection mechanism are explained subsequently.  
 



113 
 

3.2  Principles for protection mechanism 
 

Protection mechanism is a security tool that enforces some chosen 
security policies for various subjects on the system. What do you think 

will happen if there is no protection mechanism in a system? Well, without 
a protection mechanism, it is not possible to prevent subjects from 

gaining full access to the system. Each subject will be able to add content, 
remove content and also make big changes to the system without 

restriction. Mechanisms of protecting are the elements that have a 
straight connection with content and threat. While several other elements 

of threat are in the whole process, these mechanisms are situated at the 
business end of technical security (Smith, 2012). The protection 

mechanism enables the prevention of disastrous problem which might be 
caused by untrustworthy software. A protection mechanism is the controls 

system designers can build right (privilege) into their systems. The 

technical mechanisms involve 5 concepts namely, abstraction, layering, 
process isolation, data hiding and hardware segmentation.  

 

3.2.1 Elements of principles for a protection 
mechanism 

In this subsection, I will take you through those elements that are related 
to the principles for a protection mechanism. These principles include 

least privilege, economy of mechanism, complete mediation, open design, 
separation of privilege, least common mechanism, psychological 

acceptability, and fail-safe default (Bishop, 2003). 
 

i. Least privilege 
The protection mechanism of a system should have the rights (privileges) 

necessary to achieve the subject task. Lack of access should be the 
default setting. Whenever access is needed temporarily, the right after 

usage should be rescinded. The theory effectively restricts the harm that 

may occur from a mistake or accident. It also minimizes the amount of 
potential contacts for correct service between privileged services to the 

lowest, meaning that unintended, accidental or inappropriate uses of 
privilege are less likely to occur. Consequently, if a concern occurs about 

the abuse of a right, it minimizes the amount of resource systems that 
need to be audited. In another word, where a system may provide 

"firewalls," the least privilege concept gives a justification for where to 
install the firewalls. Thus, An example of this principle is the "need-to-

know" of the military security rule (Stallings et al., 2012). 
 

ii. Economy of mechanism 
The protection mechanism need to be adequately small and simple as to 

be assessed and developed/implemented, keep it as simple and small as 
possible (KISS). For example, the security kernel. The detail of the 

security kernel can be found in unit 4 of this module. A complex 

mechanism may not be correct: 



114 
 

o Modeled 

o Configured 
o Understood 

o Used 
o Implemented 

 
This familiar principle is applicable to every aspect of a system. However, 

of this purpose, it needs the emphasize on protection mechanisms: 
architecture and deployment mistakes triggering unintended access paths 

that not be found during common usage because common usage 
sometimes does not find attempts to practice inappropriate access 

pathways. Because of the above factor, techniques like line-by-line 
software inspection and physical hardware evaluation that establish 

protective mechanisms are needed. Small and non-complex architecture 
is necessary for these techniques to thrive.  

 

iii.  Complete mediation 
Every access to each object must be checked in the protection 

mechanism, and must be efficient. Further, normal run-time the 
protection mechanism must be during: 

o Initialization 
o Shutdown 

o Restart 
 

When you apply this principle in a step-by-step order, is the main 
foundation of the protection system. It forces a system-wide view of 

access management and control that includes initialization, recovery, 
restart shutdown, and maintenance in addition to typical operation. It 

means a foolproof method must be established to establish the source of 
each order. In fact, it also demands that such initiatives improve 

efficiency by sceptically evaluating the result of an authority check. If 

there is a variation in authority, the recalled outcome must be regularly 
modified in a scientific way. 

 
iv.  Open design  

Protection mechanism does not rely on design secrecy. "Health by 
Silence" is not a smart idea. Open concept security system would be open 

to Public inspection. Additionally, it's better to have a fellow/friend 
checking for an error than a foe. The structures are not to depend on the 

stupidity of possible attackers. It may depend, however, on possession of 
unique, less complicated safe passwords or keys. Thus, the decoupling of 

security mechanisms from protective keys helps several reviewers to test 
the mechanisms without worrying that the analysis undertaken can 

weaken the safety.Furthermore, any skeptical subject may be certified to 
make himself convinced that the system he is about to use is sufficient for 

his purpose. At last, trying to maintain confidentiality for any program 

which receives broad dissemination is essentially not possible.  



115 
 

v. Separation of privilege 

The separation of rights in the protection process need to be carried out in 
such a way that access to objects depends on meeting more than one 

condition  
o Separation of duty 

o Two-person rule 
 

Separated keys are valid in a computer system in any situation where two 
or more requirements have to be met before access is permitted. For 

instance, systems that provide user-extendible protected data types 
usually rely on privilege separation for their implementation. This concept 

is widely used in safe deposit boxes for banks. This is often used in the 
security framework that a nuclear weapon can be fired only if two 

separate custodians give the correct order (Gupta et al., 2016). 
 

vi.  Least common mechanism 

Is good to reduce the amount of mechanism that is specific to more than 
one user and should be set for all subjects to rely on. Each shared 

mechanism is thus a potential path to information. Each shared 
mechanism (particularly one involving shared variables) signifies a 

possible path of information between subjects and should be designed 
with great concern to ensure that safety is not compromised by accident. 

Additionally, every process that covers all subjects should be endorsed to 
the subject's satisfaction. A job presumably tough than just satisfying one 

or a few subjects. For example, given the option to implement a new 
function as a surveillance procedure shared by all subjects. Moreover, it 

can serve as a library practice which can be done as though it were the 
subject's own, choosing the latter course. Meanwhile, if one or a few 

subjects fail to meet the function 's certification level. Then they can offer 
a replacement, or not use it at all. They will stop being affected by a error 

in it anyway  

 
vii. Psychological acceptability 

The user interface needs to be simple to use in the security system so 
that subjects plan and apply the mechanism correctly and automatically. 

Else, they will be bypassed. Security mechanisms must not contribute 
extra to the difficulties of accessing resources. Furthermore, mistakes 

should be minimized to the degree that the mental picture of the subject's 
intent of protection suits the methods that the subject will use as such. If 

the subject has to translate his picture of his security protection 
requirements into a language of specifications that is fundamentally 

different, the subject may make some errors. 
 

viii. Fail-safe default   
Whenever an action fails, systems should be as safe as when the act 

started. Expectedly, the default must be lack of access. There is a need to 

deliberate on why a user should have access. However, there is no need 



116 
 

to deliberate on why a user should not have access. The substitute, in 

which protection mechanism seek to identify conditions in which access 
should be refused, provides the wrong psychological basis for safe system 

design. A traditional design has to focus on arguments why objects have 
to be accessible, rather than why they should not. Some objects will be 

looked into inadequately within a huge system. A default lack of 
authorization is therefore safer. A design/development or implementation 

flaw in a system that offers clear authorization appears to fail by refusing 
permission, thus, a safe situation because it can be detected easily. At the 

other hand, by requiring entry, a design/creation or execution flaw in a 
system that explicitly prevents entry appears to fail. It is a failure which 

in normal use can go unnoticed. This principle refers both to the outward 
appearance of the protection mechanism and its fundamental 

implementation  
 

 
 Discussion   
 

Discuss how firewall relates to protection mechanism in a computer 
system  

 

  4.0 Self-Assessment Exercise(s) 
 

1. List all the principles for a protection mechanism 
Ans: i) Least privilege ii) Economy of mechanism iii) Complete 

mediation iv) Open design v) Separation of privilege vi) Least 

common mechanism vii) Psychological acceptability viii) Fail-safe 
default 

2. Explain what you understand as default lack permission 
Ans: The term default lack permission means that whenever the 

system is at default state, then there should be no access to an 
object in-respective of the privilege level of the subject. 

3. In your understanding, explain psychological acceptability 
Ans: In the design of a secured system, the design of user interface 

must be easy and interactive such that the system will be generally 
acceptable by the users (subjects).  

 

  5.0 Conclusion 
 

In this unit, we have studied the concepts of design principles for 
protection mechanism in security design. The protection mechanism 

design principles include least common mechanism, least privilege, 



117 
 

complete mediation, economy mechanism, open design, psychological 

acceptability, separation of privilege, and fail-safe default. These 
principles help in achieving optimal protection mechanism in the security 

design.  
 

   6.0  Summary 
 

Design principles for protection mechanism, are those restrictions and 
policies that are required to achieve a secure design in terms of 

computing. These principles have been highlighted in the conclusion 
section. The least privilege principle state that subject (user) must be 

provided with only those rights that are needed in order to achieve the 
completion of a task. Economy mechanism principle states that protection 

mechanisms must be as simple as possible. Complete mediation principle 
demands that all accesses to object need to be checked to guarantee that 

they are permitted. The principle of open design states that the protection 
mechanism should not be dependent upon the secrecy of its design or 

implementation. The principle of privilege separation states that a system 

should not grant authorization based on a single condition. The Less 
Common Mechanism principle states that mechanisms used to access 

resources should not be shared. In computer protection the concept of 
psychological acceptability considers the human dimension. It says that 

protection mechanisms should not make access to the artifacts more 
difficult than if the security measures were not in operation. Default-safe 

theory states that even when a subject has clear access to an entity 
(resource) thus, that object must be denied access. 

  

7.0 References/Further Reading 
 

Gupta, B., Agrawal, D. P., & Yamaguchi, S. (Eds.). (2016). Handbook of 

research on modern cryptographic solutions for computer and cyber 
security. IGI global. 

 
Smith, R. E. (2012). A contemporary look at Saltzer and Schroeder's 1975 

design principles. IEEE Security & Privacy, 10(6), 20-25. 
 

Bishop, M. (2003). What is computer security?.IEEE Security & Privacy, 
1(1), 67-69. 

 
Stallings, W., Brown, L., Bauer, M. D., & Bhattacharjee, A. K. (2012). 

Computer security: principles and practice (pp. 978-0). Upper 
Saddle River (NJ: Pearson Education. 

 



118 
 

Unit 4:   Trusted computing base 
 

Contents 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Content 
 3.1 Overview 

3.2 Trusted computing base 

3.2.1 Security perimeter 
3.2.2 Reference monitor and kernel 

4.0 Self-Assessment Exercise(s) 
5.0 Conclusion 

6.0 Summary 
7.0    References/Further Reading 

 

1.0  Introduction 
 

Having gone through the principles of protection mechanism, we need to 
study the trusted computing base (TCB) concept, which is related to the 

protection mechanism concept. The unit involves the discussion on TCB, 
the security perimeter and, reference monitor and kernels.   

 

2.0  Intended Learning Outcomes (ILOs)  
  

In this unit, you are expected to be able to achieve the following, 

 
 Evaluate available trusted computing base system 

 

3.0  Main Content  
 

3.1 Overview 
 
The expatriate of computer security has recognized the significance of 

human discretion, which depends in the architectural structure proposed 
in the 1980s named the Trust Computing Base (TCB). The TBC is 

complete with software, hardware, procedures, and entities whose proper 
operations and decision-making are deemed necessary for the overall 

system security. It will include the program and the security officers 
running the critical safety system at an enterprise. It will also include all 

structures for the management and preservation of publicly identifiable 
information ( PII) involving employees and customers. In an operating 



119 
 

system (OS), it would involve files, a process in an underlying kernel. 

Elements that might be excluded from a TCB include any system whose 
public disclosure or malfunction would not generate a serious or cascading 

problem. Under existing infrastructure, the TCB applies to provider and 
affiliate party systems and networks (Candaele et al., 2015). This poses 

serious difficulties in securing TCB properties, as it stretches the TCB 
boundary to a more complicated area to handle and control. 

Subsequently, I would take you through the fundamentals of TCB, which 
include security perimeter, reference monitor and kernels.       

 

3.2 Trusted computing base 
 

A secured system obeys some designated set of security criteria for 
protecting system information. A TCB is considered as an integration of 

software, hardware, and controls that work together in order to form a 

trustworthy framework for implementing the security strategy that is 
necessary. TCB is viewed as a subset of a full system of information. In 

order to allow for a thorough review that will fairly guarantee that the 
device satisfies design criteria and standards, it should be as few as 

possible. The TCB is the only component of the device that can be 
expected to obey the security policy strictly and implement it. 

Nonetheless, it is not necessary that you have to trust every aspect of the 
program. However, if you have to consider a program from a security 

perspective, your evaluation will include all the trustworthy components 
that characterize the particular system  

. 
Generally, TCB components in a system are in charge of directing and 

managing authorization access to the system. It should offer methods for 
accessing resources both in internal and external components of the TCB. 

The TCB components also perform the task of ensuring that systems 

behave properly in all situations and follows the security criteria in all 
cases. The components generally limit the activities of external 

components of the TCB. In the subsequent subsections, I will take you 
through the security perimeters (Stalling et al., 2015). 

 

3.2.1 Security perimeter 
Your system's protection perimeter is seen as an artificial border that 
demarcates the TCB from the rest of the network (see Figure 3.22). The 

barrier means unsafe connectivity or interference between the TCB and 

the rest of the operating network will not occur. The TCB needs to 
establish protected networks, known as the trustworthy path, to 

communicate with the remaining network. What do you think is a 
direction of trust? A trustworthy route is a medium generated with a 

stringent standard to allow required correspondence to take place without 
exposing vulnerabilities to the TCB. This also prevents device consumers 

(commonly referred to as subjects) from compromising due to TCB 



120 
 

exchange. In any system that seek to achieve high levels of security to 

their user, then there is a need for a trusted path. 
 

 
Figure 3.22 TCB, security perimeter, and reference monitor 

 

3.2.2 Reference monitor and kernels 
If you want to incorporate a protected program, any part of the TCB must 

be built and developed to impose access restrictions on network assets 
and services (referred to as objects). The section of the TCB that 

validates access to each resource before access requests are allowed is 
called a comparison check (see Figure 3.22). The reference display is 

located between each object and subject. Verifying that the credentials of 
a requesting party meet the access requirements of the entity before the 

request is permitted to continue. In this case, if the permission 
requirements are not fulfilled, then the requests are not permitted. The 

TCB's access control enforcer is essentially the reference controller. It can 
be a conceptual element of TCB; it may not involve a real, stand-alone, or 

independent portion of the functioning framework.  
 

The security kernel is referred to as the group of components in the TCB 

which work together to execute operational functions of the reference 
monitor. The reference monitor is used as a technique or theory put into 

motion by applying a security kernel in hardware and software. The 
security kernel 's purpose is to implement suitable components to enforce 

operational functionality of the reference monitor and defy all known 
attacks. The security kernel uses a reliable way of interacting with topics. 

This also mediates all requests for access to services, allowing only those 
requests which suit the correct access rules and policies in place for a 

system The reference monitor has to provide detailed knowledge about 
every resource it controls. Typically this sort of knowledge includes their 

recognition and description. If a subject requests for access to an object, 



121 
 

then the reference monitor tests the descriptive detail of the object to 

decide whether or not access will be permitted (Stewart et al., 2008). 
 

 Discussion   
 
Security perimeter of your system is considered to be an imaginary 

boundary. What do you think ? 
 

  4.0 Self-Assessment Exercise(s) 
 
1. The group of components in the TCB that work together to 

implement reference monitor operational functions is called the? 
A. Reference monitor 

B. Hardware component 
C. Software component 

D. Security Kernel 
Answer: D 

 

2. ………………is a channel created with a stringent standard to permit 
necessary communication to occur without revealing the TCB to 

security vulnerabilities? 
A. Trusted path 

B. Path and Route 
C. None of the above 

D. All of the above 
Answer: A 

 

  5.0 Conclusion 
 

Within this unit, we have learned the fundamentals of trusted computing 
base. Such principles include the perimeter of security and the reference 

point and the kernel of protection. The security perimeter is an artificial 
line demarcating the TCB from the rest of the network. The reference 

panel is the TCB enforcer of access controls. The protection kernel's goal 

is to activate correct components to implement the operational 
functionality of the reference monitor and to defy all known attacks. 

 
 

 
 



122 
 

   6.0  Summary 
 

The primary components of a Trusted Computing Base (TCB) are the 

elements of software and hardware used to implement the security laws. 
The perimeter of protection identifies and demarcates TCB components 

from non-TCB components and the monitor of reference. This acts as a 
tool for access control around the protection perimeter. The course unit's 

goal is to understand the design principles in security design for the 
trusted computing base. 

 

7.0  References/Further Reading 
 

Candaele, B., Soudris, D., & Anagnostopoulos, I. (Eds.). (2015). Trusted 
computing for embedded systems. Cham: Springer International 

Publishing. 

 
Stewart, J. M., Tittel, E., & Chapple, M. (2008). CISSP: Certified 

information systems security professional study guide. John Wiley & 
Sons. 

 
www.sybex.com/go/cissp7e. Retrieved August 2019. 

 Stallings, W., Brown, L., Bauer, M. D., & Bhattacharjee, A. K. 
(2012). Computer security: principles and practice (pp. 978-0). 

Upper Saddle River (NJ: Pearson Education. 
 

www.sybex.com/go/cissp7e. Retrieved August 2019 
 

Virtual Lab Activities 
The following activities are provided for the 2 units explained in this 

module 

  
1) Principles of software security 

In principles of software security, a virtual lab activity is provided on how 
to test the security of software in terms of bugs and vulnerability. The 

following are steps involved in testing open source software security 
testing methodology manual: 

i) Vulnerability scanning 
ii) Security scanning  

iii) Penetration testing 
iv) Risk assessment 

v) Security auditing 
vi) Posture assessment 

vii) Ethical hacking 

http://www.sybex.com/go/cissp7e
http://www.sybex.com/go/cissp7e


123 
 

2) Trusted security base 

The focused responsibility of TCB is to maintain confidentiality and 
integrity of data on system. One of the of the function of TCB is 

monitoring several system operations namely; 
i. Memory protection 

ii. Input/out operation 
iii. Process activation 

iv. Execution domain switching. 
 

For the purpose of virtual lab activities, we will consider the memory 
protection operation of TCB. 

The TCB monitors the following operations for memory protection: 
i) Monitor references to the system memory 

ii) Monitor calls for verifying the confidentiality and integrity of the 
systems‟ data in the storage. 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 


