

i

Course Guide for CST807

Introduction

CST807 – Secure Software Engineering is a 2-credit unit. The course is an
elective course in first semester. It will take you 15 weeks to complete

the course. You are to spend 65 hours of study for a period of 13 weeks
while the first week is for orientation and the last week is for end of

semester examination.

You will receive the course material which you can read online or
download and read off-line. The online course material is integrated in the

Learning Management System (LMS). All activities in this course will be
held in the LMS. All you need to know in this course is presented in the

following sub-headings.

Course Competencies

By the end of this course, you will gain competency to:

 Assess Software Development Vulnerabilities

Course Objectives

The course objectives are to:

 Provide the student with a deep understanding of the intricacies of
securing programming

 Enable students to assess vulnerabilities in programming languages.

To introduce students to the various software analysis and models

Working Through this Course

The course is divided into modules and units. The modules are derived
from the course competencies and objectives. The competencies will

guide you on the skills you will gain at the end of this course. So, as you
work through the course, reflect on the competencies to ensure mastery.

The units are components of the modules. Each unit is sub-divided into

introduction, intended learning outcome(s), main content, self-
assessment exercise(s), conclusion, summary, and further readings. The

introduction introduces you to the unit topic. The intended learning
outcome(s) is the central point which help to measure your achievement

or success in the course. Therefore, study the intended learning
outcome(s) before going to the main content and at the end of the unit,

revisit the intended learning outcome(s) to check if you have achieved the

ii

learning outcomes. Work through the unit again if you have not attained

the stated learning outcomes.

The main content is the body of knowledge in the unit. Self-assessment
exercises are embedded in the content which helps you to evaluate your

mastery of the competencies. The conclusion gives you the takeaway
while the summary is a brief of the knowledge presented in the unit. The

final part is the further readings. This takes you to where you can read
more on the knowledge or topic presented in the unit. The modules and

units are presented as follows:

Module 1: Fundamental Components of Design Architecture
Unit 1: Architecture Development and Style

Unit 2: Technological Developments
Unit 3: Performance Measure

Module 2: Instructional Set Architecture and Design
Unit 1: Memory Location and Operations

Unit 2: Addressing Modes
Unit 3: Instruction Types

Module 3: Secure Component Design

Unit 1: Processing Unit Design
Unit 2: Memory System Design

Unit 3: Input and Output Design

Module 4: Security Design Principles
Unit 1: Principles of Secure Design

Unit 2: Principles of Software Security
Unit 3: Principles of Protection Mechanism

Unit 4: Trusted Security Base

There are thirteen units in this course. Each unit represent a week of

study.

Presentation Schedule

The weekly activities are presented in Table 1 while the required hours of

study and the activities are presented in Table 2. This will guide your

study time. You may spend more time in completing each module or unit.

iii

Table I: Weekly Activities

Week Activity

1 Orientation and course guide

2 Module 1 Unit 1

3 Module 1 Unit 2

4 Module 1 Unit 3

5 Module 2 Unit 1

6 Module 2 Unit 2

7 Module 2 Unit 3

8 Module 3 Unit 1

9 Module 3 Unit 2

10 Module 3 Unit 3

11 Module 4 Unit 1

12 Module 4 Unit 2

13 Module 4 Units 3 and 4

14 Revision and Response to Questionnaire

15 Examination

The activities in Table I include facilitation hours (synchronous and
asynchronous), assignments, mini projects, and laboratory practical. How

do you know the hours to spend on each? A guide is presented in Table 2.

Table 2: Required Minimum Hours of Study

S/N Activity Hour per
Week

Hour per
Semester

1 Synchronous Facilitation (Video

Conferencing)

1 13

2 Asynchronous Facilitation (Read and

respond to posts including facilitator‘s
comment, self-study)

3 39

3 Assignments, mini-project, laboratory

practical and portfolios

1 13

 Total 5 65

Assessment

Table 3 presents the mode you will be assessed.

Table 3: Assessment

S/N Method of Assessment Score (%)

1 Portfolios 10

2 Mini Projects with presentation 30

3 Assignments 20

4 Final Examination 40

Total 100

iv

Portfolio

A portfolio has been created for you tagged ―My Portfolio‖. With the use
of Microsoft Word, state the knowledge you gained in every Module and in

not more than three sentences explain how you were able to apply the
knowledge to solve problems or challenges in your context or how you

intend to apply the knowledge. Use this Table format:

Application of Knowledge Gained
Module Topic Knowledge Gained Application of Knowledge Gained

You may be required to present your portfolio to a constituted panel.

Mini Projects with presentation

You are to work on the project according to specification. You may be

required to defend your project. You will receive feedback on your project
defence or after scoring. This project is different from your thesis.

Assignments

Take the assignment and click on the submission button to submit. The

assignment will be scored, and you will receive a feedback.

Examination

Finally, the examination will help to test the cognitive domain. The test
items will be mostly application, and evaluation test items that will lead to

creation of new knowledge/idea.

How to get the Most from the Course

To get the most in this course, you:

 Need a personal laptop. The use of mobile phone only may not give
you the desirable environment to work.

 Need regular and stable internet.
 Need to install the recommended software.

 Must work through the course step by step starting with the

programme orientation.

v

 Must not plagiarise or impersonate. These are serious offences that

could terminate your studentship. Plagiarism check will be used to
run all your submissions.

 Must do all the assessments following given instructions.
 Must create time daily to attend to your study.

Facilitation

There will be two forms of facilitation – synchronous and asynchronous.

The synchronous will be held through video conferencing according to
weekly schedule. During the synchronous facilitation:

 There will be one hour of online real time contact per week making

a total of 13 hours for thirteen weeks of study time.
 At the end of each video conferencing, the video will be uploaded

for view at your pace.
 You are to read the course material and do other assignments as

may be given before video conferencing time.
 The facilitator will concentrate on main themes.

 The facilitator will take you through the course guide in the first
lecture at the start date of facilitation

For the asynchronous facilitation, your facilitator will:

 Present the theme for the week.

 Direct and summarise forum discussions.
 Coordinate activities in the platform.

 Score and grade activities when need be.
 Support you to learn. In this regard personal mails may be sent.

 Send you videos and audio lectures, and podcasts if need be.

Read all the comments and notes of your facilitator especially on your
assignments, participate in forum discussions. This will give you

opportunity to socialise with others in the course and build your skill for
teamwork. You can raise any challenge encountered during your study. To

gain the maximum benefit from course facilitation, prepare a list of
questions before the synchronous session. You will learn a lot from

participating actively in the discussions.

Finally, respond to the questionnaire. This will help ACETEL to know your

areas of challenges and how to improve on them for the review of the
course materials and lectures.

vi

Learner Support

You will receive the following support:

 Technical Support: There will be contact number(s), email address
and chatbot on the Learning Management System where you can

chat or send message to get assistance and guidance any time
during the course.

 24/7 communication: You can send personal mail to your facilitator
and the centre at any time of the day. You will receive answer to

you mails within 24 hours. There is also opportunity for personal or
group chats at any time of the day with those that are online.

 You will receive guidance and feedback on your assessments,

academic progress, and receive help to resolve challenges facing
your stuides.

1

Course Information

Course Code: CST 807
Course Title: Secure Software Engineering

Credit Unit: 2
Course Status: Elective

Course Blurb: This introduces the learners to security
requirements; specification of security

requirements; software development lifecycle and

security development lifecycle; programming
languages and type-safe languages; best security

programming practices; writing secure distributed
programs; secure software, risk analysis, threat

modelling, deploying cryptographic algorithms,
defensive coding, penetration testing, static

analysis, and security assessment; security for
web and mobile applications.

Course Duration: 13 Weeks
Required Hours

for Study: 65

Course Team

Course Developer: ACETEL

Course Writer: Mustapha Aminu Bagiwa PhD and Donfack Kana
PhD

Content Editor: Ismaila Idris PhD
Instructional Designer: Inegbedion Juliet .O. PhD

Learning Technologists:
Copy Editor: Mr Awe Olaniyan Joseph

2

Module 1: Fundamentals and

Requirement Level Analysis

Introduction

In this module, you are going to learn the basic step for building security

into a software development life cycle to produce secure software. The
module is organised into four units as follows:

Unit 1: Overview of Secure Software Engineering

Unit 2: Software Security Life Cycle
Unit 3: Software Quality Attributes

Unit 4: Security Requirement Gathering Principles and Guidelines

Unit 1: Overview of Secure Software
Engineering

Contents
1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

 3.1 Introduction to Software Engineering Concept
3.2 Security problems in Software

3.3 Security Mechanisms
3.3.1 Which Security Strategy Questions Should be Asked?

3.3.2 Use of Risk Management Process to describe Software

Security
3.3.3 Incorporating Software Security Practices into the

Software Development Life Cycle
4.0 Self-Assessment Exercise(s)

5.0 Conclusion
6.0 Summary

7.0 References/Further Reading

 1.0 Introduction
Software is the heart of the modern world; you cannot work with any
modern devices without software. Software is used virtually in all aspect

of human endeavour. This usage ranges personal use to companies and
institution up to the governments of every country in the world. This unit

3

introduces the concept of software engineering, security challenges in

software and way these challenges can be solved.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 describe the steps in software engineering and

 explain why security should be embedded in software development.

 3.0 Main Content

3.1 Introduction to Software and Software

Engineering Concept

Software is everywhere from our homes to the streets down to our
working places. Its functionalities depend not only on the environment

which it is developed but upon compounded software demanding
information systems which are connected and use the Internet as the

medium of their interaction and information transfer. It is used virtually in
all facet of life ranging from national infrastructures, banks,

telecommunications companies, hospitals, supermarkets, gas stations,
voting infrastructures, airline, to academia. Other numerous institutions

also depend on software to perform the basic activities in the areas of its

usage. Therefore, the software is of utmost importance to the overall
functionalities of every society.

In developing software, the user needs are analysed, and the application

is designed, constructed, and tested to ensure that it satisfies the defined
user needs through the use of software programming languages.

Because of the importance of software, guidelines for developing software
are needed to obtain economically software that is reliable and work

efficiently. This is generally obtained through the application of
engineering principles in software development. Software engineering is

a detailed study of engineering to the design, development and
maintenance of software. It ensures that the application is built

consistently, correctly, on time and on budget and within requirements.

Proper and correct functionalities of software at all phases of technological

advancement is not the only condition to put into consideration but also,
the availability of the software everywhere and at the right time to

achieve the digital advancements in life which everyone is getting familiar
with. But, The rate at which sensitive information is revealed to the public

4

by organizations/institutions that aim at storing, processing, and

transmitting information (gotten from, e.g. financial transactions, social
networks etc.) through the Internet using their software-agnostic systems

is alarming. This makes the software systems that handle these activities
of storing, processing, and transmitting this sensitive information exposed

to unauthorised and unintentional users. In a nutshell, software-agnostic
systems and other software-enabled functionalities have provided more

undefended and prevalent access to sensitive information—including
personal identities—they use.

What is software reliability?

3.2 Security Problems in Software

As software is used virtually in all facets of life, so also, the problems
associated with software are also available in virtually all facets of life.

These problems are everywhere; they are available on all the devices that

we use (e.g. our handheld devices and cars, hospital equipment and
pacemakers, etc.) and not only on the traditional computers that we

know. These problems can creep up the security and safety of any
systems they operate on. Software with security problems is everywhere.

Security problems like coding bugs, e.g. buffer overflow, design problems
(such as shifting error handling) and unwanted users who can have

unauthorised access to and also attack them with the aid of malicious
code. They can find a middle ground in the systems by taking advantage

of software weaknesses. The main victim of software security problems
are the Internet-enabled software applications, but with the growing

extensibility and complexity of Internet-enabled software applications,
they make software security even more exciting.

The functionalities of most systems are solely dependent on software,

which makes it an excellent focal point for unwanted users, whose

purposes may be economical, unlawful, terrorist, oppositional, or
malicious. So, this makes securing of software to be of utmost

importance. The reason why unwanted users find it easy to aim at
software is that it is fundamentally guaranteed that there are going to be

the occurrence of known weaknesses in the software that have known
attack methods. This can be misused to disrupt one or more of the

software's security properties or to change the software security state
into an insecure state.

What mechanisms do you think can be used in securing software?

3.3 Security Mechanisms

There are so many application security products available in the market

these days that tend to provide a solution to the problem of insecure

5

software. But, these solutions offered by these products are not all they

are cracked to be, because they may aid in demonstrating, detecting and
describing security problems. But they do very little when it comes to

solving the security problem.

The mechanisms used in securing software include:
a. Which security strategy questions should be asked?

b. Use of risk management process to describe software security.
c. Incorporating software security practices into the software

development life cycle.

3.3.1 Which Security Strategy Questions Should be
Asked?

An organisation/institution alone cannot provide all the protections and

preventive security mechanisms that organization/institution needs. To

achieve these, the organisation/institution must communicate and
interact with appropriate organisation/institution stakeholders. This is

very important because it will help in determining the threats that may
attack the system, the threat acceptance and flexibility if the threat is

recognised. The following are questions from the organisation/institution
viewpoint, whose answers can help in understanding security risks in

achieving project goals and objectives:
i. What value needs to be protected?

ii. Which assets need to be protected to tolerate this value? Why must
the assets be protected, and what would happen if the assets are

not protected?
iii. What are the possible opposing circumstances and consequences

that must be prevented and managed, and at what cost? How much
disturbance can be endured before actions are taken?

iv. How are residual risk determined and effectively managed?

v. How are the solutions to these questions effectively integrated into
the implementation and enforcement of security plan and strategy?

Provision of answers to these questions can aid in determining how much,

where, and how fast to invest in providing profiling solutions to software
security risk. In contrary to this, the organization/institution will find it

tough to express and provide an effective security strategy and,
therefore, this may lead to the inability of the organisation/institution to

successfully oversee and manage enterprise, information, and software
security.

Why are software easily attacked?

3.3.2 Use of Risk Management Process to describe
Software Security

An important aspect of any approach of ensuring adequate security of

software is the characterisation and use of continuous risk management

6

process. Security risks such as risks found in the outputs and results

produced by each software development life-cycle (SDLC) phase during
assurance activities, risks introduced by insufficient processes, and

personnel-related risks are all software security risk. These software
security risks can be characterised using risk management framework

(RMF). Example of RMF, as shown in Figure 1 below depicts five stages of
how a business organisation can characterise security risks. These stages

include:
i. Understanding business context

ii. Identify and link the business and technical risk
iii. SynthesiSe and rank the risks

iv. Define the risk mitigation strategy
v. Carryout fixes and validate

Fig. 1: Risk Management Framework

3.3.3 Incorporating Software Security Practices into
the Software Development Life Cycle

The simple statement by software developers who focus on software
functionality often misunderstood during the implementation of vital

changes in the way software are built that; they take software security
and security software to be the same. But, it is important to know that

software security and security software are not the same during the
implementation of vital changes in the way software are built. Clearly,

there exist some security mechanisms, and most modern software
includes these security mechanisms; but adding features such as SSL to

any software (to protect communications cryptographically) does not
provide a total solution to the security problem. Software security is a

system-wide issue that takes take into consideration both design for
security (such as a hard design that makes software attacks difficult) and

security mechanisms. The main and reason why software security should

7

be incorporated into a full software development lifecycle approach are

that the likelihood of security problem in any software is inevitable
because of the presence of a problem in any system's standard-issue part

than in some given security feature. Most methods used in practice these
days in providing software security include training for developers,

testers, and architects; analysis and auditing of software objects; and
security engineering. But, a better way of providing software security will

be to incorporate security practice in the software development life cycle.
This can be applied irrespective of the base software development process

being followed. In the end, this simply implied that a Secure Development
Lifecycle (SDL) could be created by adjusting existing SDLC to incorporate

the security practices into the development life cycle.
i. Which Security Strategy Questions Should be Asked?

ii. Use of Risk Management Process to describe Software Security
iii. Incorporating Software Security Practices into the Software

Development Life Cycle

Discussion
Let‘s reflect on the call for trustworthy computing by Bill Gates in 2002 on

the future of software development.

Bill Gates: Priorities Are Changing, 2002
…In the past, we've made our software and services more compelling for

users by adding new features and functionality, and by making our

platform richly extensible. We've done a terrific job at that, but all those
great features won't matter unless customers trust our software.

So now, when we face a choice between adding features and resolving

security issues, we need to choose security. Our products should
emphasize security right out of the box, and we must constantly refine

and improve that security as threats evolve…Why is security not
considered as part of the SDLC life cycle base on the lecture above?

 4.0 Self-Assessment Exercise(s)
1. Software functionalities depend on

I. Its development environment
II. Internet for information transfer

III. Compounded software demanding information systems which
are connected

A. I only

B. I and II only
C. II and III only

D. I, II and III only
ANSWER: D

8

Software functionalities depend on the environment in which it is

developed, compounded software demanding information systems which
are connected, and Internet, which serves as the medium of interaction

and information transfer.

2. The following steps are required in software engineering
I. Software design

II. Software development
III. Software consumption

IV. Software reuse
V. Software maintenance

A. I and II only
B. IV and V only

C. I, II and V
D. III, IV and V only

ANSWER: C

Software engineering is a study of engineering to the design,

development and maintenance of software

3. Why is Internet-based software the main victim of software
security?

A. It is designed by different software developers
B. Unauthorised users can have access to the software

C. Only authorised users can have access to the software
ANSWER: B

Internet-based software is the main victim of software security because

unauthorised users can have access to the software available online

4. Why is software security important?

A. To prevent bugs and unwanted users
B. To limit software usage

C. To make software available to all intended users
D. To provide proper and correct functionalities of the software

ANSWER: A

 5.0 Conclusion
As you have learnt in this unit, the software is very important in virtually
all institutions. You have been taken through the concept of software

engineering, the security problems in software and the mechanisms that
can be used to solve these problems.

Assignment

On the 21st October 2019, Company-A requested a software product from
Company-B to help handle their Customer financial data where customers

9

would input their personal details for registration and conduct transaction

on the platform. Unfortunately, due to an input validation vulnerability in
the software development process of Company-B Software product, some

customers were able to View other customer account details stored in the
database and manipulate their current balance using SQL injection. This

stolen detail was used to clone credit card and make withdrawal as well as
other transaction. From the information given above, write a

comprehensive report on the precaution they should have taken to avoid
these incidents.

 6.0 Summary

Software is everywhere from our homes to the streets down to our

working places. Its functionalities basically depend not only on the
environment which it is developed but upon compounded software

demanding information systems which are connected and use the Internet
as the medium of their interaction and information transfer. It is used

virtually in all facet of life. This facet of life includes national

infrastructures, banks, telecommunications companies, hospitals,
supermarkets, gas stations, voting infrastructures, airline, academia etc.

Other numerous institutions also depend on software to perform the basic
activities in the areas of its usage. But, this software can be threatened

with security problems which can sabotage its importance. Security
problems like bugs, flaws, viruses and unwanted intruders obtain

unauthorised access to systems and also attack them with the aid of
malicious code. They can find a middle ground in the systems by taking

advantage of software weaknesses. Mechanisms like Which Security
Strategy Questions Should be Asked?, Use of Risk Management Process to

describe Software Security and Incorporating Software Security Practices
into the Software Development Life Cycle are used in improving securing

software.

7.0 References/Further Reading

Gary McGraw (2006). Software Security: Building Security In. Addison-
Wesley. ISBN 0321356705.https://www.oreilly.com/library/ view/

software-security-building/0321356705/

Sommerville, I. (2011) Software Engineering. (9th ed.). Pearson.

Julia H. Allen; Sean Barnum; Robert J. Ellison; Gary McGraw & Nancy R.
Mead (2006). Software Security Engineering: A Guide for Project

Managers. Addison-Wesley. ISBN -10: 0-321-50917-X.

https://www.oreilly.com/library/%20view/%20software-security-building/0321356705/
https://www.oreilly.com/library/%20view/%20software-security-building/0321356705/

10

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead N. R.
(2008). Software Security Engineering. Pearson India.

Mark S. Merkow & Lakshmikanth Raghavan (2010). Secure and Resilient

Software Development. LLC. US: Taylor and Francis Group.
https://doi.org/10.1201/EBK1439826966

Bill Gates: Trustworthy Computing https://www.wired.com/2002/01/bill-

gates-trustworthy-computing/

https://doi.org/10.1201/EBK1439826966
https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://www.wired.com/2002/01/bill-gates-trustworthy-computing/

11

Unit 2: Software security life cycle

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
 3.1 Software Development Life Cycle (SDLC)

3.2 Secured Software Development Life Cycle (SDLC)

4.0 Self-Assessment Exercise(s)
5.0 Conclusion

6.0 Summary
7.0 References/Further Reading

 1.0 Introduction

Software security is an important aspect of software engineering that tend
to provide a solution to malicious attack onto the software. This unit

explains the concept of the software development life cycle (SDLC) and
also explains how software security can be incorporated in SDLC phases

and its benefit.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 describe the phases of a software development life cycle
 explain how to build security in the SDLC

 3.0 Main Content

3.1 The Software Development Life Cycle (SDLC)

Software Development Life Cycle (SDLC) is the standard process followed

in developing any software product. It is an organized method of
developing software applications. Most organisations adopt a model

(Waterfall, Iterative, Agile, etc.) in developing software; this process may
be modified according to the framework and requirement adopted by the

organisation. When developing software, different standard SDLC models
have been adopted in different ways to conform to individual conditions.

This is explained in figure 2 below. The general SDLCs include the
following phases as depicted in the figure that follows:

12

i. Requirements Gathering.

ii. Software Design.
iii. Coding.

iv. Testing.
v. Deployment.

Fig. 2: The Software Development Life Cycle Phases

i. Requirements Gathering
This is the phase where expected behaviour of the software or

system which needs to be developed are documented.
ii. Software Design

This is the phase where the scheme or template of the system
which can be translated into software modules/functions/libraries,

etc. is outlined. These pieces put together to form a software
system. The output of this phase will be presented to the developer

for proper automation via coding.
iii. Coding

In this phase, the scheme or template of the software is converted

into reality by implementing the whole application using any
programming language. Completion of the phase depends on the

programming team involved (i.e. the number of people
programming) and the size of the project (i.e. application).

iv. Testing
In this phase, testing of the project (i.e. application) is done. This is

normally after the completion of the coding phase to ensure that
the application performs expectedly and issues like performance

and all functionalities are alright. If any problem concerning the
performance and functionalities problem is observed, it will be fixed.

v. Deployment
After successful testing, and all performance and functionalities are

alright. The application will be deployed into use in the phase base
on purpose; it is meant to serve.

13

Most security issues emerge only after completion of the applications

development. This can be taken care of by identifying the security issues
through the security assessment performance of the applications. This is

not the best way to treat security issues because the cost of
implementation of this method is very high, and a large number of

security issues will be discovered late (or not). So, a better way of taking
care of security issues will be to incorporate the concept of security

activities into the software development lifecycle. This can aid in
discovering and reducing vulnerable activities.

What is the phase of SDLC?

3.2 Secured Software Development Life Cycle

(SDLC)
This is simply the incorporating of security activities into the Software
Development Life Cycle (SDLC) to ensure that security guarantee

activities such as architecture analysis, review of code, and testing are an

essential part of the development routine. Every phase of SDLC will
include security – above and over the existing software development

activities, as shown in the figure below.

Fig. 3: The Secured Software Development Life Cycle Phases

The association of each software development lifecycle phase with

corresponding security activities is shown in the figure below:
 Requirements

o Abuse cases
o Establish Security Requirements

o Risk Assessment
 Design

o Risk Assessment
o Attack surface analysis/reduction

o Threat Modeling

 Coding
o Perform Static Analysis

o Peer code Best Practices
 Testing

o Penetration testing
o Attack surface review

o Application Fuzzing
 Deployment

https://www.synopsys.com/software-integrity/software-security-services/software-architecture-design.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/penetration-testing.html

14

o Final Security Review

 Feedback
o Operational security

There are so many advantages in incorporating security into SDLC of any

organisation‘s framework. These advantages include:
i. Development of secured software as security is a persistent

problem.
ii. Makes stakeholders be security conscious.

iii. Early detection of security errors/fault/problems in the system.
iv. Cost of detecting and resolving security issues in the system will be

reduced.

The restriction of the application of security controls to the requirements,
design, code, and test phases in the software development life cycle is not

proper. So it should be extended to deployment phase, where quality

assurance, strict configuration control, security tests, and code reviews
would be performed, together with system update because it adds

effectiveness of secured software.

Content Editor, please provide activity with solution for

the students to work on

 4.0 Self-Assessment Exercise(s)
1. The importance of incorporating security measure right from the

SDLC are:

i. Development of secured software as security is a persistent
problem.

ii. Makes stakeholders be security conscious.

iii. Early detection of security errors/fault/problems in the
system.

iv. Cost of detecting and resolving security issues in the system
will be reduced

A. I only
B. I, II and III only

C. I, II, III and IV
D. II and III

ANSWER: C

Virtual Laboratory Activity

15

2. Abuse cases are security activity in which software development

lifecycle phase?
A. Requirements Gathering.

B. Software Design.
C. Coding.

D. Testing

ANSWER: A

Requirements gathering is the phase where software developer will
describe what the software will do when everything goes right.

3. The best way of treating software security is by identifying the

security issue.
A. True

B. False

ANSWER: B

Identifying the security issue is not the best way of treating software

security because identifying software security issue is an expense. When
treated, there is no guarantee that another security issue will not occur in

the future.

Assignment
What is the security control that can be done at the requirement phase of

SDCL?
i. quality assurance

ii. strict configuration control
iii. code reviews

iv. system update

 5.0 Conclusion

In the unit, we discussed the phase of SDLC and stated the reason why
security should be incorporated in all the phases of the SDLC, which will

be cost-effective and more secured. We presented a secured SDLC, all the
possible add security measures in each phase of the SDLC and also the

benefits in a secured SDLC.

16

 6.0 Summary

Software Development Life Cycle (SDLC) is the standard process followed

in developing any software product. Most organisations adopt any type of
SDLC model in developing software; this process may be modified

according to the framework and requirement adopted by the organization.
Most security issues emerge only after completion of applications. These

security issues can be taken care of by identifying the security issues
through the security assessment performance of the applications. This is

not the best way to treat security issues because the cost of
implementation of this method is very high, and a large number of

security issues will be discovered late (or not). A better way of taking care
of these security issues will be to incorporate the concept of security

activities into the software development lifecycle. Incorporating security
activities into SDLC of any organisation‘s framework can provide

advantages like:
 the development of secured software as security is a persistent

problem;

 stakeholders become security conscious;
 early detection of security errors/fault/problems in the system,

 and the cost of detecting and resolving security issues in the system
are minimised.

7.0 References/Further Reading

Amjad H, Mohammad A. A, Ola M. S & Mohammed, A. (2017). ―A Survey
on Design Methods for Secure Software Development.‖

International Journal of Computer and Technology. Vol. 16 Iss.
7https://rajpub.com/index.php/ijct/article/view/6467

Axelrod, C. W. (2013). Engineering safe and secure software systems.
Artech House.https://us.artechhouse.com/Engineering-Safe-and-

Secure-Software-Systems-P1556.aspx

Gary McGraw (2006). Software Security: Building Security In. Addison-
Wesley. ISBN 0321356705.https://www.oreilly.com/library/view/

software-security-building/0321356705/

Khan, M. U. A. & Zulkernine, M. (2009). ―A Survey on Requirements and
Design Methods for Secure Software Development,‖ Technical

Report No. 2009 – 562 , School of Computing, Queen‘s University,
Kingston, Ontario, Canada, August 2009.

http://research.cs.queensu.ca/TechReports/Reports/2009-562.pdf

https://rajpub.com/index.php/ijct/article/view/6467
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
https://www.oreilly.com/library/view/%20software-security-building/0321356705/
https://www.oreilly.com/library/view/%20software-security-building/0321356705/
http://research.cs.queensu.ca/TechReports/Reports/2009-562.pdf

17

Mark S. Merkow & Lakshmikanth Raghavan (2010). Secure and Resilient

Software Development. LLC. US: Taylor and Francis Group,
https://doi.org/10.1201/EBK1439826966.

https://doi.org/10.1201/EBK1439826966

18

Unit 3: Software Quality Attributes

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
 3.1 Attributes of Software

3.2 Attributes of Secured Software

3.3 The Quality of a Software

4.0 Self-Assessment Exercise(s)
5.0 Conclusion

6.0 Summary
7.0 References/Further Reading

 1.0 Introduction

The previous unit introduced the concept of secured SDLC and its
importance. In this unit, you will be taken through the attribute of quality

software.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 describe the Attributes of good software
 investigate the quality of the software.

 3.0 Main Content

3.1 Attributes of Software

The following attributes a good software must possess:

i. Maintainability: It should be dynamic in responding to users needs
at all times. This is important because as the requirement and mode

of operation of the environment change, functionalities of the
software should also change.

ii. Dependability and security: It should be reliable, secure, and
safe. It should not cause any damage (e.g. physical or economic) in

the environment when a system failure occurs, and no unwanted
users should have access or damage the system.

19

iii. Efficiency: It should properly manage the system resources such

as memory and processor cycles.
iv. Acceptability: It should be acceptable to all the different users it is

intended for, compatible with all other types of system, it must be
usable.

What are the three principal dimensions to be achieved when
securing any software?

3.2 Attributes of Secured Software

Several fundamental properties can be view as attributes of security as a
software property; these properties include:

i. Confidentiality: The software must hide all the contents of the
assets it is managing and the characteristics of the assets from

unauthorised users or entities. Such characteristics as its

relationships with its execution environment and its users. The
software must also prevent unauthorised users and entities from

having access to publicly available assets such as open-source
software, its characteristics and content.

ii. Integrity: Unauthorised changes such as overwriting, corrupting,
tampering, damaging, inserting of unintended (including malicious)

logic, or deletion to software and its managed resources must be
resistant and resilient to any mode of sabotage by unauthorised

user and entities. This sabotage by unauthorised user and entities
can be illegal changes to the software code, managed system

resources, configuration, or behaviour by authorized entities, or any
modifications by unauthorized entities. The integrity of software

must be conserved at all level (that is during the software's
development and its execution).

iii. Availability: At all time, the software must be available for use,

functioning and in good condition to all its authorised and intended
users (processes and human). At the same time, unauthorised

users (humans and processes) should not be giving access to the
functionalities of the software at all times also.

Two important additional properties of software entities (e.g., proxy

agents, Web services, peer processes) that act as users:
i. Accountability: the software must record, track and acknowledge

the responsibility of all software entities security-relevant actions.
The security-relevant actions of the software entities should be

specified by the audit-related language in the security policy of the
software system. The tracking of the responsibility of all software

entities security-relevant actions must be possible both before and
after the recorded actions occur.

ii. Non-repudiation: the software must ensure that its accountability

property cannot be undermined or avoided, and it must also have

mk:@MSITStore:C:/Users/user/Documents/Dr.%20Kana/Mine/Text/Julia%20H.%20Allen,%20Sean%20J.%20Barnum,%20Robert%20J.%20Ellison,%20Gary%20McGraw,%20Nancy%20R.%20Mead%20-%20Software%20Security%20Engineering-Addison-Wesley%20Professional%20(2008).chm::/final/gloss01.html#gloss01_020
mk:@MSITStore:C:/Users/user/Documents/Dr.%20Kana/Mine/Text/Julia%20H.%20Allen,%20Sean%20J.%20Barnum,%20Robert%20J.%20Ellison,%20Gary%20McGraw,%20Nancy%20R.%20Mead%20-%20Software%20Security%20Engineering-Addison-Wesley%20Professional%20(2008).chm::/final/gloss01.html#gloss01_041
mk:@MSITStore:C:/Users/user/Documents/Dr.%20Kana/Mine/Text/Julia%20H.%20Allen,%20Sean%20J.%20Barnum,%20Robert%20J.%20Ellison,%20Gary%20McGraw,%20Nancy%20R.%20Mead%20-%20Software%20Security%20Engineering-Addison-Wesley%20Professional%20(2008).chm::/final/gloss01.html#gloss01_013
mk:@MSITStore:C:/Users/user/Documents/Dr.%20Kana/Mine/Text/Julia%20H.%20Allen,%20Sean%20J.%20Barnum,%20Robert%20J.%20Ellison,%20Gary%20McGraw,%20Nancy%20R.%20Mead%20-%20Software%20Security%20Engineering-Addison-Wesley%20Professional%20(2008).chm::/final/gloss01.html#gloss01_001
mk:@MSITStore:C:/Users/user/Documents/Dr.%20Kana/Mine/Text/Julia%20H.%20Allen,%20Sean%20J.%20Barnum,%20Robert%20J.%20Ellison,%20Gary%20McGraw,%20Nancy%20R.%20Mead%20-%20Software%20Security%20Engineering-Addison-Wesley%20Professional%20(2008).chm::/final/gloss01.html#gloss01_045

20

the ability to prevent software entities from rejecting or challenging

the responsibility of actions they have performed.

3.3 The Quality of a Software

Quality of software is not directly comparable with quality in
manufacturing. Software quality is dependent on both functional and non-

functional system attributes and not just about the correct
implementation of the software functionality. In assessing the quality of

software, there is a need to provide answers relating to the system‘s
characteristics questions. Questions such as:

i. During the development process, are the programming and

documentation standards followed?
ii. Is the testing of the software properly done?

iii. Can the software be sufficiently depended on when use?
iv. Is the software performance acceptable for normal use?

v. Can the software be used?
vi. Is the software understandable and well structured?

Attributes of quality of a software

Quality of software has attributes which are related to the software
maintainability, dependability, efficiency and usability. These attributes

are as follows:
i. Safety

ii. Understandability
iii. Portability

iv. Security

v. Testability
vi. Usability

vii. Reliability
viii. Adaptability

ix. Reusability
x. Resilience

xi. Modularity
xii. Efficiency

xiii. Robustness
xiv. Complexity

xv. Learnability

 4.0 Self-Assessment Exercise(s)
1. The following are attributes of secured software except

A. Confidentiality

B. Maintainability

C. Integrity
D. Availability ANSWER: B

mk:@MSITStore:C:/Users/user/Documents/Dr.%20Kana/Mine/Text/Julia%20H.%20Allen,%20Sean%20J.%20Barnum,%20Robert%20J.%20Ellison,%20Gary%20McGraw,%20Nancy%20R.%20Mead%20-%20Software%20Security%20Engineering-Addison-Wesley%20Professional%20(2008).chm::/final/gloss01.html#gloss01_020
mk:@MSITStore:C:/Users/user/Documents/Dr.%20Kana/Mine/Text/Julia%20H.%20Allen,%20Sean%20J.%20Barnum,%20Robert%20J.%20Ellison,%20Gary%20McGraw,%20Nancy%20R.%20Mead%20-%20Software%20Security%20Engineering-Addison-Wesley%20Professional%20(2008).chm::/final/gloss01.html#gloss01_041
mk:@MSITStore:C:/Users/user/Documents/Dr.%20Kana/Mine/Text/Julia%20H.%20Allen,%20Sean%20J.%20Barnum,%20Robert%20J.%20Ellison,%20Gary%20McGraw,%20Nancy%20R.%20Mead%20-%20Software%20Security%20Engineering-Addison-Wesley%20Professional%20(2008).chm::/final/gloss01.html#gloss01_013

21

2. All the following questions should be addressed when assessing the

quality of software except
A. Is the testing of the software properly done?

B. Can the software be sufficiently depended on when use?
C. Is the software performance acceptable for normal use?

D. Is the software good?

ANSWER: D

3. When software has the capability of producing a safety mechanism
when ever it senses unwanted activity and also counters it if it finds

a way into the software, we say the software is:
A. Safe

B. Secure
C. Robust

D. Good

ANSWER: A

4. When software has the capabilities of distinguishing between any

unwanted element that is trying to have access into it, we say the
software is:

A. Safe
B. Secure

C. Robust
D. Good

ANSWER: B

5. When software has the capabilities of recovering to normal working

condition if any abnormality happens, then the software is said to

be:
A. Safe

B. Secure
C. Robust

D. Good

ANSWER: C

 5.0 Conclusion
In this unit, we presented the attributes of software, and also attributes
that a secured software should have and quality of good software.

22

 6.0 Summary

Good software should have the following attributes:

i. Maintainability
ii. Dependability and security

iii. Efficiency
iv. Acceptability

While a secured software should have the following properties:

i. Confidentiality
ii. Integrity

iii. Availability
iv. Accountability

v. Non-repudiation

7.0 References/Further Reading

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R.
(2008). Software security engineering. Pearson India.

Axelrod, C. W. (2013). ―Engineering safe and secure software systems.‖

Artech House.https://us.artechhouse.com/Engineering-Safe-and-
Secure-Software-Systems-P1556.aspx

Mark S. Merkow & Lakshmikanth Raghavan (2010). Secure and Resilient

Software Development. LLC. US: Taylor and Francis Group,
https://doi.org/10.1201/EBK1439826966

McGraw, G. (2006). Software Security: Building Security In. Addison-

Wesley. ISBN 0321356705.https://www.oreilly.com/library/view/

software-security-building/0321356705/

https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
https://doi.org/10.1201/EBK1439826966
https://www.oreilly.com/library/view/%20software-security-building/0321356705/
https://www.oreilly.com/library/view/%20software-security-building/0321356705/

23

Unit 2: Security Requirement Gathering
Principles and Guidelines

Contents
1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

 3.1 Security Requirement Phase
3.2 Requirement Engineering Process

3.2.1 Secured Requirement Gathering Process
3.3 Case Study: Banking System

4.0 Self-Assessment Exercise(s)
5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

 1.0 Introduction
Security requirements gathering is an important aspect of secured SDLC.
In this unit, we‘ll present the secured software requirement gathering

process and also a case study.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 explain the security requirement phase

 perform security requirements gathering and analysis
 describe the security requirement of SDLC.

 3.0 Main Content

3.1 Security Requirement Phase

As we all know, that security requirement of any system is different from
the functional requirement of a system. Security requirement of any

system is the high-level organisational policy presented into detailed
system specification requirements. It centres on the analysis of system

resources and services to be protected and also the security threats from
which the system resources and services need protection

24

Quality Properties of Requirements

i. Design Independent: It should be free decisions to be taken

when designing and developing any system
ii. Unambiguous: Is should the same response to a question is asked

over and over
iii. Precise: It should specify precisely the behaviour of the software,

its required data set and also the specification of input needed and
its expected outputs.

iv. Understandable: the user should be able to understand its
working principle.

v. Traceable: Identify the document uses the software
vi. Verifiable: A requirement is verifiable if there is a quantifiable or

observable effect of the software that is directly expressed by the
requirement.

vii. Prioritised: It should be able to rank processes base on their level

of importance.
viii. Complete– It should contain all the information that describes the

design pattern of the software so that all expect activities of the
software and all outputs are presented. So also a response to user

input should be documented, and the identification of all content of
the system should be presented.

ix. Consistent: It should contain a statement that is precise in terms
of meaning and the activity to be performed.

x. Organised: It should be well arranged so that a user can
understand and identify the meaning and use of every statement.

xi. Modifiable: It can be modified/changed when the need arises.

3.2 Requirement Engineering Process

i. Requirements Elicitation: This is the process of observing the

existing system and developing a prototype that can serve as a
sample. This activity of observing the existing system may be by

asking the users its working principle, shortcomings, and how they
think it can be improved.

ii. Requirements Analysis: This is the evaluation of the conditions of
the existing system to access the reason that preempted the

development of the new system. This can be achieved by studying
the results obtained from the requirements elicitation phase. The

security requirements to put into consideration in this phase are:
a. Confidentiality

b. Integrity
c. Availability

d. accountability and
e. authenticity.

iii. Requirements Modelling and Specification: In this phase, a

document containing the information that translates the findings

25

from the requirement analysis phase will be developed to specify

the modelling requirements.
iv. Requirements Verification: In this phase, all activities in the

previous phase are checked to verify their correctness and also
eliminate errors if they exist.

3.2.1 Secured Requirement Gathering Process
The software requirement gathering for secured SDLC consists of three

activities, as shown in the diagram (Secure Software Development Life
Cycle Phases) in Unit 3. These activities include:

i. Misuse/abuse case
ii. Establishing a security requirement

iii. Risk analysis

3.3 Case Study: Banking System

Consider applying these secured software requirement gathering on the
banking system.

i. Misuse/abuse case

Fig. 4: Security Requirement

As shown in the Figure above, the misuse cases are incorporated into use
case diagrams to express the system unwanted behaviours (e.g., spoofing

user account, invading privacy and perpetrate fraud) instigated by a
misuser (e.g., cracker or thief). This depiction results in security use

cases are controlling access, ensuring privacy, integrity and
nonrepudiation.

26

ii. Establishing a security requirement

When establishing a security requirement gathering in the baking system,
take the following steps:

a. System modelling.
b. Identification of resources.

c. Identification of threats and vulnerabilities.
d. Elicitation of security requirements.

e. Evaluation of security requirements.

a. System modelling: this models the baking system into
subproblems of bank, bank staff, bank customer and account

information.
b. Identification of resources: This is the checking of subproblems

the system modelling can create. For example, information on any
customer account can be created into two subproblems:

i. editing of account information and

ii. viewing account information.
c. Identification of threats and vulnerabilities: In this step,

identify possible threats that will be harmful to the system by
exploiting the system vulnerabilities. Will the threats describe the

capabilities of the attacker to violate the security concerns of the
system?

d. Elicitation of Security requirements: In this step, the modelling
of intended security requirements to mitigate the threats causing

vulnerabilities will be done.
e. Evaluation of Security requirements: this is the itemisation of

the activities to de done to evaluate the resulting security
requirements.

 4.0 Self-Assessment Exercise(s)

i. The following are possible email misuse cases except.
a) Eavesdropping on e-mail

b) Attacks against the mail servers
c) Modifying e-mail

d) Communicate with a colleague

e) Spoofing e-mail

Answer: D

ii. Sending mail to a wrong recipient can be regarded as email misuse?
TRUE or FALSE

Answer: TRUE

27

 5.0 Conclusion
Security requirement of any system is the high-level organisational policy

presented into detailed system specification requirements. The software
requirement gathering for secured SDLC consists of three activities:

i. Misuse/abuse case
ii. Establishing a security requirement

iii. Risk analysis

 6.0 Summary

In the unit, we presented the quality properties of requirements gathering

and requirement engineering process. We also presented a security
requirement case study of a banking system.

7.0 References/Further Reading

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R.

(2008). Software security engineering. Pearson India.

Amjad H, Mohammad A. A, Ola M. S & Mohammed, A. (2017). ―A Survey
on Design Methods for Secure Software Development.‖

International Journal of Computer and Technology. Vol. 16 Iss. 7

Axelrod, C. W. (2013). Engineering safe and secure software systems.

Artech House. https://us.artechhouse.com/Engineering-Safe-and-

Secure-Software-Systems-P1556.aspx

Mark S. Merkow & Lakshmikanth Raghavan (2010). ―Secure and Resilient

Software Development.‖ LLC. US: Taylor and Francis Group,
https://doi.org/10.1201/EBK1439826966

McGraw, G. (2006). Software Security: Building Security In. Addison-
Wesley. ISBN 0321356705.https://www.oreilly.com/library/view/

software-security-building/0321356705/

Noopur, D. (2005), ―Secure Software Development Life Cycle Processes:
A Technology Scouting Report‖, Software Engineering Process

Management.

Ransome, J., & Misra, A. (2018). Core Software Security: Security at the

Source. CRC presshttps://www.crcpress.com/Core-Software-

Security-Security-at-the-Source/Ransome-Misra/p/book/
9781466560956

https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
https://doi.org/10.1201/EBK1439826966
https://www.oreilly.com/library/view/%20software-security-building/0321356705/
https://www.oreilly.com/library/view/%20software-security-building/0321356705/
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/%209781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/%209781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/%209781466560956

28

Module 2: Vulnerabilities during

Implementation, Consequences,
and Prevention, Consideration

Module Introduction

Software security is a branch in software engineering focusing on safe

software design which involves the best use of programming language,
tools and methods. In other words, secure software focuses on preventing

vulnerabilities, faults and bugs in software. This module introduces you to
techniques and methods for eliminating software vulnerabilities when

building secured software. In this module, you will be studying six units
as follows:

Unit 1: Defensive Coding Practices
Unit 2: Code Inspections

Unit 3: Database Security
Unit 4: Software Vulnerabilities And Exploitation

Unit 5: Secure Programming for Preventing BOF, FSB, SQLI, XSS,
Session

Unit 6: Mobile Application Development Security

In each unit, I will explore a particular topic in detail and highlight self-
assessment exercises at the end of the unit. Finally, I also highlight

resources for further reading at the end of each unit.

Unit 1: Defensive Coding Practices

Contents
1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

 3.1 Guard Your Program to Isolate the Problem Caused by Errors
3.2 How Much Defense to Leave in Production Code

3.2.1 Allow Codes for Error Checking in the Program
3.2.2 Do away with Codes that check for Trivial Errors

3.2.3 Remove Code that Results in Hard Crashes
3.2.4 Leave in Code that Helps the Program Crash Gracefully

3.2.5 Log Errors for Your Technical Support Personnel
3.2.6 Make Sure the Error Messages You Leave In Are

Friendly

29

3.3 Defensive about Defensive Coding

4.0 Self-Assessment Exercise(s)
5.0 Conclusion

6.0 Summary
7.0 References/Further Reading

1.0 Introduction

Defensive coding is not referring to the act guarding your program codes.
In defensive coding, a software developer is expected to exhibit a mind-

set that he is not certain about what a cyber-criminal will do to attack his
program. So that in case a malicious activity is lunched on his program, it

will not have a negative effect on the operation of his software. In
defensive programming, therefore, the concept is that if a method in a

program passed a corrupt data, the data should not affect the
functionality of the method even if the passed data is coming from

another method or subroutine. In this unit, you will be equipped with

skills on how to develop programs that will not be affected by invalid
data, events or programmer mistake.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 describe the process of code inspection for errors
 develop projects using techniques of defensive programming.

3.0 Main Content

3.1 Guard Your Program to Isolate the Problem

Caused by Errors

Barricade is a strategy for damage-containment. This is similar to having

isolated compartments in the hull of a ship. If the vessel enters an iceberg
and the hall is broken wide open, the compartment affected will be closed

off, and the remainder of the vessel will not be impacted. Barricade is also
comparable to a building firewall as well. A building's firewall prevents fire

spreading from one part of a building to another. (Barricades used to be
called' firewalls,' but the word ' firewall' now frequently relates to

preventing hostile network traffic.) For defensive coding reasons, one way
to barricade is to identify certain interfaces as ‗secure' areas.

30

3.2 How Much Defense to Leave in Production

Code

The goal of defensive coding is the ability to have an error noticed as

early at the development stage of software. This is because the
developers need to be cautious at that stage because, during

development, it is less expensive to fix such errors. Moreover, the
program can always fail and recover gracefully during development

without the loss of sensitive information. I will now introduce you to some
guidelines on the programming code to leave and leave out in your

production code during software development.

Why is it important to identify errors at an early stage of software
development?

3.2.1 Allow Codes for Error Checking in the Program
An initial task is to decide on places in your program where errors can be

catastrophic or non-catastrophic. Example, if you are developing a
cashbook ledger system using a spreadsheet, an error for a screen update

may not have severe consequences on the system because it will only
affect the screen. However, you certainly cannot afford to have an error in

the logical or arithmetical engine of the system. This sought of error will

result in the production of the incorrect result by anyone using the
system. Users will be more comfortable dealing with bad screen update

rather than incorrect ledger calculations.

3.2.2 Do Away with Codes That Check for Trivial
Errors

If an error cannot be fixed easily and present itself as non-trivial in term

of its consequence, then remove the code that checks for it in the
program. Code removal, in this case, is not referring to physical deletion.

Instead, it refers to the use of version control, pre-compiler switches or
any other user-defined technique that will allow the program to compile

leaving out that code with an error. However, you can also leave the code
that checks the error, but the error should always be recorded in an error

log file whenever the program compile.

3.2.3 Remove Code That Results in Hard Crashes
As discussed in section 3.1, you need errors to be noticed as early as
possible during the stages of your software development. This will allow

you to fix that error without causing any damage since the system has
not gone into full operation. Therefore, the best way to achieve this early

fix is to have the program keep track and print debugging messages and

crashes when an error is detected.

31

3.2.4 Leave in Code that Helps the Program Crash

Gracefully
Allow programs that contain debugging code for fatal error detection in
your program. For instance, engineers left some of their debug code in

by design in the Mars pathfinder. An error occurred after the landing of
the pathfinder. By using the debug code left in the complete program, JPL

technician could diagnose the issue and upload an updated code version
to the pathfinder.

3.2.5 Log Errors for Your Technical Support
Personnel

Software developers usually equip their codes with checkpoint and
assertions to halt a program for debugging purpose during program

development. You might consider changing the checkpoint and assertions
to message logs that will be saved in a file to be used by technical staff

for clues in filing errors rather than physically deleting them.

3.2.6 Make Sure the Error Messages You Leave in Are
Friendly

If you decide to practice the skills of leaving error messages in your
program, make sure they are user friendly in terms of language and ease

of understanding.

3.3 Defensive about Defensive Coding
Avoid too much defensive programming. This is because when you try to
check and analyses every data that come into your program for every

possible error, whether logical or semantic, your program will end of
becoming so heavy and extremely slow.

The complexity of the program will be much higher because of the
additional code needed for the defensive coding. The codes used for the

defence may also contain defects. Thus, you may likely find a defect in
the defensive system as well.

Discussion
The use of healthy defensive programming in software development to

avoid error after deployment is very important. Does defensive coding
affect the complexity of a program, and what are your thoughts?

32

 4.0 Self-Assessment Exercise(s)

1. Why do software developers usually equip their codes with
checkpoint and assertions?

a. For easy identification
b. For easy lookup

c. For easy debugging
d. For easy execution

Answer: C

Software developers usually equip their codes with checkpoint and

assertions to halt a program for debugging purpose during program
development.

2. It is good to have too many defensive codes in your software. True

or False

Answer: B

It is not always good to have too much defensive code in your software.

This is because when you try to check and analyses every data that come
into your program for every possible error, whether logical or semantic,

your program will end up becoming so heavy and extremely slow.

3. It is possible to find a defect in defensive code as well. True or False

Answer: True
You may likely find a defect in the defensive code as well.

 5.0 Conclusion

You have learnt from this unit the skills on how to develop programs that

will not be affected by invalid data, events or programmer mistake.
Furthermore, you have also learnt that it is not always the best to be over

defensive in your program. Thus, be careful about where to be defensive
and set priorities for your defence.

6.0 Summary

At the end of this unit, you have learnt that defensive coding is not

referring to the act of guarding your program codes but rather an idea on

33

the way to stop a corrupt data from affecting the functionality of your

program. Even if the passed data is coming from another method or
subroutine. In the next unit, you will be learning about code inspection.

7.0 References/Further Reading

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R.
(2008). Software Security Engineering. Pearson India.

Ammann, P., & Offutt, J. (2016). Introduction to Software Testing.

Cambridge University Press.https://cs.gmu.edu/~offutt/
softwaretest/

Axelrod, C. W. (2013). Engineering Safe and Secure Software Systems.

Artech House.https://us.artechhouse.com/Engineering-Safe-and-

Secure-Software-Systems-P1556.aspx

Fernandez, E. B. (2004, June). ―A Methodology for Secure Software
Design.‖ Software Engineering Research and Practice (pp. 130-

136). http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.83.2972&rep=rep1&type=pdf

Howard, M., LeBlanc, D., & Viega, J. (2005). 19 Deadly Sins of Software

Security. Programming Flaws and How to Fix
Them.http://math.uaa.alaska.edu/~afkjm/cs470/handouts/Security

Sins.pdf

McGraw, G. (2006). Software Security: Building Security. (Vol. 1).
Addison-Wesley Professional.https://www.oreilly.com/library/view/

software-security-building/0321356705/

Ransome, J., & Misra, A. (2018). Core Software Security: Security at the

Source. CRC Press https://www.crcpress.com/Core-Software-
Security-Security-at-the-Source/Ransome-

Misra/p/book/9781466560956

Viega, J., & McGraw, G. (2011). ―Building Secure Software: How to Avoid
Security Problems the Right Way‖ (paperback)(Addison-Wesley

Professional Computing Series). Addison-Wesley Professional.
https://www.oreilly.com/library/view/building-secure-software/

9780672334092/

https://cs.gmu.edu/~offutt/%20softwaretest/
https://cs.gmu.edu/~offutt/%20softwaretest/
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
http://citeseerx.ist.psu.edu/viewdoc/download?doi=%2010.1.1.83.2972&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=%2010.1.1.83.2972&rep=rep1&type=pdf
http://math.uaa.alaska.edu/~afkjm/cs470/handouts/SecuritySins.pdf
http://math.uaa.alaska.edu/~afkjm/cs470/handouts/SecuritySins.pdf
https://www.oreilly.com/library/view/%20software-security-building/0321356705/
https://www.oreilly.com/library/view/%20software-security-building/0321356705/
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.oreilly.com/library/view/building-secure-software/%209780672334092/
https://www.oreilly.com/library/view/building-secure-software/%209780672334092/

34

Unit 2: Code Inspections

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
 3.1 What is Code Inspection?

3.1.1 Manual Code Review

3.1.2 Static Code Analysis
3.2 Purpose of Code Inspection

3.3 Code Inspection Methodology
3.3.1 Code Review

3.3.2 Code Walkthrough
4.0 Self-Assessment Exercise(s)

5.0 Conclusion
6.0 Summary

7.0 Referenves/Further Reading

1.0 Introduction

Code inspection is an essential component of checking and validating

software. Code inspection is a mechanism used to analyse and verify
system requirements, design model, source codes of a program and

proposed system tests. In this unit, you will be learning about software

inspection how it is performed and its advantages in developing a secured
software system.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 explain the code inspection
 evaluate software application to determine if it has met the coding

standard
 clarify if the software meets a code inspection standard.

35

3.0 Main Content

3.1 What is Code Inspection?

Code inspection sometimes referred to a critical code review is a special

kind of review or static testing that focus on the check and analysis of
source code of a software system to avoid multiplication of defect at a

later stage of development. Code inspection has been very economical
and effective in the detection of software defects.

Michael Fagan first introduced code inspection in software development

and was used by IBM for many years before the first publication in an
academic journal. Inspection on the readable portion of software like

requirements or design models can also be performed. Code inspection
includes the understanding of the system, its application domain and

modelling domain to identify errors.

A later study at IBM reported that software developers spent 3.5 hours

finding a single error when not using code inspection methodology.

Who usually leads the team of code inspectors?

Code inspection is most often led by an expert who in most cases, is not
the writer of the code to be inspected. It involves a formal type of review

based on defined rules and checks that uses exit and entry criterion which
involves the individual examination of entire or part of a code of a

software application. Code inspection aims at covering four main objects
during software production as:

i. Verification of the conformance of the code with the concerned
project documentation such as software design documents that are

needed to clearly explain data handling, algorithms and traceability

with the definition of requirements that the software must conform.
ii. Verification of the correct design. And the implementation of

barriers to protect against internal and external attacks.
iii. Verify proper usage of programming rules.

iv. Verify the correct implementation of safety requirements.

Code inspection can be performed using manual code review, or it can be
performed using a static analysis tool. I will now introduce you to the two

ways of performing code inspection.

3.1.1 Manual Code Review
This involves a team of experts coming together with the code author to
manually inspect the entire or part of software code to discover defects.

Note that it is more appealing to identify the defect before deploying a

36

system after its complete development. Depending on the coding

language used for the software, manual code inspection might present
itself as simple or complex.

3.1.2 Static Code Analysis
This involves the systematic analysis of software without the need to
execute its code. Note that analysis performed when the software is

executing is called dynamic code analysis. Static analysis is usually done

using with an automated tool in conjunction with a human intervention
called program understanding, program comprehension or code review.

What is the advantage of static code analysis?

Static code analysis has the advantage of being able to inspect an entire

software code. However, it may not be as efficient as an expert when it
concerns defect discovery. Many static analysis tools are available online.

Some of which are open source while others are proprietary.

3.2 Purpose of Code Inspection

There are about three main reasons for performing code inspection during

software development which includes:
 Code inspection, which is usually done during software development

to find defects and identify process improvement in the

development phase.

 Code inspection if done, will report a list of findings that include
performance metrics that can be used to assist in improving the

software development process.

 Code inspection involves reading and understanding a source code
which may aid an inspection.

3.3 Code Inspection Methodology

Code inspection methodologies in software development include code

review and code walkthrough.

3.3.1 Code Review
Code review is the systematic evaluation of software code with an
attempt to finding and removing vulnerabilities in the program code.

Example of such vulnerabilities includes memory leaks, or buffer
overflows. Code review should be well documented and normally includes

experts as such; it should be led by a trained expert who is not the author

of the code.

37

3.3.2 Code Walkthrough
Code walkthrough is a form of code inspection in which a programmer led
the inspection and other team members participate by asking questions

and cheeking and identifying errors about development standards. The
designer usually is part of the meeting with some of his team members in

attendance. The goal of this inspection methodology is to enhance
learning about the content of the code. And also to find defects.

Discussion
Does code inspection take care of SDLC in terms of secure coding?

Assignment
After reading this unit, what do you think are the responsibilities of a code

reviewer? Start your response by explaining the code review and then
stating your answer with theories and skill from your experience.

 4.0 Self-Assessment Exercise(s)

1. What is the name of the person that introduced code inspection in
software development?

a. Ian Summerville
b. Michael Farad

c. Michael Hudson
d. Michael Fagan

 Answer: D
 Michael Fagan

2. How long does a software developer spend on an average finding a

single error in his program when not using code inspection?
a. 2.5 hours

b. 3.5 hours
c. 4.5 hours

d. 6.5 hours

Answer: B
3.5 hours

3. In how many ways can code inspection be performed?

a. Two ways

b. Three ways
c. Four ways

d. Five ways

38

Answer: A
Code inspection can be performed in two ways: manual code review

and using static analysis tools.

 5.0 Conclusion
You have learnt from this unit different ways in which inspection can be
done on part or the entire part of the software code to identify defects.

You have also learnt the objectives and purpose for code inspection in the
process of software testing. In conclusion, you have ascertained that code

inspection is an integral part of software verification and validation.

 6.0 Summary
At the end of this unit, you have learnt that code inspection is critical for

quality check and defect discovery in software development. You have
also learnt that code inspection an essential step in the development of

defect-free and robust software application. In the next unit, you will be
learning about security in databases.

7.0 References/Further Reading

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R.

(2008). Software Security Engineering. Pearson India.

Ammann, P., & Offutt, J. (2016). Introduction to Software Testing.
Cambridge University Press.https://cs.gmu.edu/~offutt/

softwaretest/

Fernandez, E. B. (2004, June). ―A Methodology for Secure Software
Design.‖ In: Software Engineering Research and Practice (pp. 130-

136). http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.83.2972&rep=rep1&type=pdf

McGraw, G. (2006). Software Security: Building Security In (Vol. 1).
Addison-Wesley Professional.https://www.oreilly.com/library/view/

software-security-building/0321356705/

Viega, J., & McGraw, G. (2011). Building Secure Software: How to Avoid
Security Problems the Right Way (paperback)(Addison-Wesley

Professional Computing Series). Addison-Wesley Professional.
https://www.oreilly.com/library/view/building-secure-software/

9780672334092/

https://cs.gmu.edu/~offutt/%20softwaretest/
https://cs.gmu.edu/~offutt/%20softwaretest/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=%2010.1.1.83.2972&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=%2010.1.1.83.2972&rep=rep1&type=pdf
https://www.oreilly.com/library/view/%20software-security-building/0321356705/
https://www.oreilly.com/library/view/%20software-security-building/0321356705/
https://www.oreilly.com/library/view/building-secure-software/%209780672334092/
https://www.oreilly.com/library/view/building-secure-software/%209780672334092/

39

Unit 3: Database Security

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
 3.1 Introduction to Database Security

3.2 Database Security Threats

3.2.1 Loss of Integrity
3.2.2 Loss of Availability

3.2.3 Loss of Confidentiality
3.3 Database Security Control Measures

3.4.1 Access Control
3.4.2 Inference Control

3.4.3 Flow Control
3.4.4 Encryption

3.5 Database Administrator and Security
4.0 Self-Assessment Exercise(s)

5.0 Conclusion
6.0 Summary

7.0 References/Further Reading

1.0 Introduction

You will learn from this unit the approach that can be employed to secure
your database against threats. You will also learn the mechanism for

granting access privileges to the user and database security measures.
You will also learn the techniques for enforcing security on a database.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 describe Data Security Triad
 explain Access control as it relates to database security

 utilise security control techniques to protect your database and
data.

40

3.0 Main Content

3.1 Introduction to Database Security

Database security is a vast area in the design and development of

databases stressing some concerns that include:
 Legal and ethical issues with regards to access rights to

information. For example, some information out there may not be
publicly accessible to unauthorized organisation or person because

the information is private. In the digital world, several laws guide
information privacy.

 The concern for policy issues either in government or cooperation

institutions in terms of which type of data to be allowed public
access. Examples are credit card security details or patient medical

records.

 The concern of which level to secure the database system. An

example is whether security should be implemented at the physical,
operating system or the database management system level.

 The concern for an organisation to identify and categorise user and

data at different security levels. An example is credential access
level such as high, medium or level access.

 Fig. 5: Data Security Triad

Checkmarx.com

41

3.2 Database Security Threats

When cyber-criminal lunch an attack on the database of organisation, the
organisation may end of suffering from degradation or loss data and

privacy and security goals such as integrity, confidentiality and availability
as seen in figure 5.

3.2.1 Loss of Integrity
Database integrity is a necessity for the protection of data from an illegal

alteration in a database. Alteration of information involves creating,
insertion, update, changing information status and deleting of

information.

3.2.2 Loss of Availability
Data integrity loss happens in a database if changes to the information in

the database are made intentionally or unintentionally without authorized

permission. If the integrity of information is breached, it may lead to
erroneous information.

3.2.3 Loss of Confidentiality
Database confidentiality is a requirement that the data in the database be
protected against unauthorised public disclosure.

What is an example of confidentiality loss?

Example of confidentiality loss includes data privacy violations. Therefore,
to protect databases against these security threats, I will introduce you to

four kinds of control measures.

3.3 Database Security Control Measures

Four main control measures are available to provide security to

databases. These control measures are:
i. Access control

ii. Inference control
iii. Flow control

iv. Encryption

3.3.1 Access control
One security problem surrounding all computer systems is authorised to
access to data for malicious reasons. Therefore, DBMS have to include

mechanisms for the restriction of illegal database access. Such a
mechanism is referred to as access control and can be handled by the

creation of different user accounts that could control logins by the DBMS.

42

3.3.2 Inference Control
Based on different criteria, statistical databases are used to provide
statistical data or summaries of values. A population statistics database,

for instance, can provide age-specific statistics, revenue level and other
criteria. Access to the database may be allowed to statistical database

users such as corporate statisticians or commercial businesses to acquire
statistical data about a population but not to access extensive private

data about individuals.

In-Text Question
What should be ensured by statistical database security?

Statistical database security must ensure that unauthorised people do not
gain access to an individual‘s private information. Sometimes deducting

or inferring from queries involving only summary statistics based on

organisational information is possible. This must, therefore, not be
allowed. This situation is called the security of the statistical database,

and the associated control measures are called control measures for
inferences.

3.3.3 Flow Control
Flow control is another security measure that is used in database security
information flow prevention such that the information does not fall into

the hands of an unintended user. Many channels serve as pathways for

the flow of information that violates organization security policies, and
such pathways are called covert channels.

3.4.4 Encryption
Data encryption is also another security measure for the protection of
sensitive information (such as credit card numbers) that may be

transmitted over the Internet. Encryption is also used in providing

additional security for the protection of the sensitive part of a database.
The data in the database usually are encoded using some encryption

algorithm. An unauthorised user who may eventually succeed in accessing
the encrypted data may not make sense of it easily, but authorised users

are given decoding or decrypting algorithms (or keys) to decipher the
data. Encrypting techniques are very difficult to decode without a key.

3.4 Database Administrator and Security

The Database administrator (DBA) controls the activity of the database
and managing its usage. He/she is responsible for granting access to

users of the database and categorizing the users concerning the
organisation security policies. The DBA also has a DBA account called a

system or superuser account in the database management system that

offers strong rights not made accessible to periodic database accounts

43

and users. DBA-privileged commands include instructions to grant and

withdraw rights to individual accounts, users or groups of users.

Discussion
After reading this unit, State four ways of providing security to your

database. Start your response by explaining what database security
means.

Case Studies

On a regular checkup, Mr Aliyu engaged in a normal Google search,
operating system fingerprinting and port scans. However, he could not

gain access instead got an encrypted authentication login form using SSL.
After a careful check on the webpage containing the encrypted login form,

Mr Aliyu noticed that a hidden APP_Name field is being passed to his
database application whenever there is an attempt to login to the site

resulting in an injection to his database.

Content Editor, please provid activity and solution on
coding and data security

 4.0 Self-Assessment Exercise(s)

1. What do organisations suffer from when cybercriminals launch an
attack on their database?

a. Data degradation only
b. Loss of data only

c. Degradation and loss of data
d. None of the among the options

Answer: C

The organisation usually suffers from degradation and loss of data when
there is an attack on their database by cybercriminals. Because the

integrity, confidentiality and availability of the data in the database would
have been compromised.

2. What are covert channels?

a. Covert channels are pathways for the flow of information that
does not violate organisation security policies.

Virtual Laboratory Activity

44

b. Covert channels are pathways for the flow of information that

violates organisation security policies.
c. Covert channels are codes for the encrypting information

d. Covert channels are codes for the decrypting information

Answer: B

Covert channels are pathways for the flow of information that violates
organization security policies.

3. Which among the option is not the responsibility of a database

administrator (DBA)?
a. Controlling the activities of the database

b. Managing the usage of the database
c. Granting access to users of the database

d. Designing DBMS

Answer: D

The database administrator (DBA) is responsible for controlling the

activities of the database and managing its usage. He/she is responsible
for granting access to users of the database and categorising the users

concerning the organisation security policies. A DBA is not responsible for
designing DBMS.

 5.0 Conclusion
You have learnt from this unit the approach that can be employed to

secure a database against threats. You have also learnt about some
database security threats and how to enforce access control measures on

a database. In conclusion, you have ascertained that the DBA is
responsible for the overall security of the database system.

 6.0 Summary
At the end of this unit, you have learnt the concept of database security

and the different database threats in terms of loss of integrity,
availability, and confidentiality. You have also learnt the types of control

measures to deal with these problems, which include access control,
inference control, flow control, and encryption. In the next unit, you will

be learning about software vulnerabilities and how they are exploited by
the cybercriminal to launch an attack to target machines.

45

7.0 References/Further Reading

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R.
(2008). Software Security Engineering. Pearson India.

Ammann, P., & Offutt, J. (2016). Introduction to software testing.

Cambridge University
Press.https://cs.gmu.edu/~offutt/softwaretest/

Axelrod, C. W. (2013). Engineering Safe and Secure Software Systems.

Artech House.https://us.artechhouse.com/Engineering-Safe-and-
Secure-Software-Systems-P1556.aspx

Fernandez, E. B. (2004, June). ―A Methodology for Secure Software

Design.‖ In: Software Engineering Research and Practice (pp. 130-

136).http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.
2972&rep=rep1&type=pdf

Howard, M., LeBlanc, D., & Viega, J. (2005). 19 Deadly Sins of Software

Security. Programming Flaws and How to Fix
Them.http://math.uaa.alaska.edu/~afkjm/cs470/handouts/Security

Sins.pdf

Ramez E & Navathe S (2011). Fundamentals of Database. (6th ed.).
Addison-Wesley

Ransome, J., & Misra, A. (2018). Core Software Security: Security at the

Source. CRC press.https://www.crcpress.com/Core-Software-
Security-Security-at-the-Source/Ransome-

Misra/p/book/9781466560956

Viega, J., & McGraw, G. (2011). ―Building Secure Software: How to Avoid

Security Problems the Right Way‖ (paperback). Addison-Wesley
Professional Computing Series. Addison-Wesley Professional.

https://www.oreilly.com/library/view/building-secure-
software/9780672334092/

https://cs.gmu.edu/~offutt/softwaretest/
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.2972&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.2972&rep=rep1&type=pdf
http://math.uaa.alaska.edu/~afkjm/cs470/handouts/SecuritySins.pdf
http://math.uaa.alaska.edu/~afkjm/cs470/handouts/SecuritySins.pdf
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.oreilly.com/library/view/building-secure-software/9780672334092/
https://www.oreilly.com/library/view/building-secure-software/9780672334092/

46

Unit 4: Software Vulnerabilities and
Exploitation

Contents
1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 What is Software Vulnerability?
3.2 Software Vulnerabilities

3.3 Why Vulnerabilities in Software
3.4 Software Vulnerabilities as Threat Door Way

3.5 Dealing with Software Vulnerabilities
3.6 Preventing Software Vulnerabilities

3.6.1 Code Inspection

3.6.2 Security Activity Graph
3.7 Detecting Software Vulnerabilities

3.7.1 Static Method
3.7.2 Dynamic Method

4.0 Self-Assessment Exercise(s)
5.0 Conclusion

6.0 Summary
7.0 References/Further Reading

1.0 Introduction

You will learn from this unit the detail of vulnerabilities that can be
exploited by cyber-criminals to launch an attack on your computer

software. You will also learn about the possible damages these
vulnerabilities can cause to your computers.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 define software vulnerability

 manage the various vulnerabilities that may occur in software and
how malware exploit them

 detect vulnerabilities in software using a static or dynamic method.

47

3.0 Main Content

3.1 What is Software Vulnerability?

Vulnerability in a computer or software is a term in cybersecurity that

refers to system flaws that leave it open to attack. This vulnerability could
also refer to any sort of weakness present in a computer or software, its

processes or anything that makes it possible to expose information
security to a threat.

Network engineers, software developers and computer users can

safeguard their computers and software from vulnerabilities by updating
security patches of their software regularly.

What is the use of security patches in software?

Software security patches are for solving faults or safety loopholes
discovered in the original software release. Network engineers and

computer users should always be kept informed of present software
vulnerabilities and look for ways to safeguard against them.

3.2 Software Vulnerabilities

The most prevalent vulnerabilities of software are missing data
encryption, operating system command injection, SQL injection, buffer

overflow, missing authentication for critical functions, and missing
authorisation. Others are unrestricted upload of dangerous file types,

reliance on un-trusted inputs in a security decision, cross-site scripting
and forgery, code download without integrity checks and use of broken

algorithms. Similarly, URL redirection to untrusted sites, Path traversal,
bugs, weak passwords and virus-infected software are common

vulnerabilities. Note that, every year, the list is growing bigger as fresh

ways are found by cybercriminals to steal and corrupt data.

3.3 Why Vulnerabilities in Software

Vulnerabilities of the software normally occur because programmers fail

to adhere strictly to programming rules fully. Furthermore, software
developers do not take elements of a computer system into

considerations when designing their program, and this, in turn, creates a
weakness in the system. Also, some programmers program in an unsafe

and inaccurate manner that aggravates vulnerability in their software.

48

3.4 Software Vulnerabilities as Threat Doorways

Errors in your software can serve as a doorway to malicious threat such
as malware, phishing or proxy attack in your computer or network. This is

because the error has left the data in the computer or network
vulnerable. With this vulnerability, cybercriminals, hackers and malware

designers can take control of your computer by performing malicious
activity on it such as disabling the computer, encrypting your files or data

theft.

3.5 Dealing with Software Vulnerabilities

A practical scenario to dealing with vulnerabilities in software is to apply

suitable security testing methods before the software is deployed. This
will aid avoid vulnerabilities and attack to the software. Several

techniques of software testing have been proposed and implemented in

practice for dealing with software vulnerabilities. These software
techniques include vulnerability coverage, source of test cases, test

generation method, level of testing, and granularity of test cases, tool
automation and target application.

3.6 Preventing Software Vulnerabilities

Models are the first approach to addressing and understanding
vulnerabilities. However, to avoid any vulnerability related issue on your

software, it is necessary to rely on standard prevention techniques for
vulnerability prevention. There are two ways for the prevention of

vulnerabilities on software which includes: code inspection and security
activity graph.

3.6.1 Software Inspection
The method of software inspection comprises of reading or visually
inspecting the program code or record of software to discover any flaws

and correct them early in the phase of development otherwise it will be
costly to fix the flaws once the software is deployed. A successful

inspection relies on the inspector‘s capacity, knowledge and type of

defects he/she is trying to find.

3.6.2 Security Activity Graph
Security Activity Graphs SAGs are also useful for vulnerability avoidance.

SAGs are graphical illustrations linked to causes in a VCG. SAGs show
how the combination of safety operations during the design phase of

software development can prevent vulnerabilities in the software.

49

3.7 Detecting Software Vulnerabilities
Models and inspection are helpful for understanding and preventing

vulnerabilities; however, programmers also need to rely on tools to detect
vulnerabilities during the software development phase. Some of these

tools are based on static methods that do not need you to run a code for
the detection process, while others are dynamic methods that need you to

execute the code to detect vulnerability.

3.7.1 Static Methods
Static methods are those types of methods that do not require running
the source code of an application. The goal is to evaluate or directly

obtain specific information from the source code without executing it.
There are various methods for static analysis such as pattern matching,

lexical analysis, parsing, type qualifier, data flow analysis, taint analysis,
model and model checking.

Pattern matching

This involves looking within the source code for a pattern string and
identifying the string‘s number of occurrences within the source code. If

for example, you consider C language, the pattern could be any call to
dangerously vulnerable functions such as getc. The limitation of this

method is that it produces a lot of false positives.

Lexical analysis
Lexical analysis is another static analysis method for detecting software

vulnerability in which program source code is converted into a series of
tokens that are subsequently compared to a vulnerability database. The

limitation of this method is that it also produces a lot of false positives.

Parsing
Parsing is more complicated than lexical analysis in detecting software

vulnerability; a program representation is constructed using a parsing
tree to evaluate the program‘s syntax and semantics when the source

code is parsed. This parsing method, for instance, is used to detect SQL
injection attacks.

3.7.2 Dynamic Methods
In dynamic methods, it is essential to run the software program to detect

vulnerabilities and then evaluate the conduct or response of the system
before concluding. There are various methods for dynamic analysis such

as Fault injection, fuzzy testing, dynamic taunt and sanitisation.

50

Discussion

A company wants the software to live as soon as possible without proper
check for vulnerability, how safe will you say this request is by the

management.

 4.0 Self-Assessment Exercise(s)

1. What is software vulnerability?
a. Vulnerability in software refers to system flaws that leave the

software open for an attack by a cybercriminal.
b. Vulnerability in software refers to system flaws that leave the

software secured to a cybercriminal.
c. Vulnerability in software refers to system security.

d. None among the options.

Answer: A

Vulnerability in software refers to system flaws that leave the software

open for an attack by a cybercriminal.

2. Why do vulnerabilities occur in software?
a. Because programmers use too much security

b. Because not all programmers are good
c. Because programmers rarely adhere to programming rules

d. Because programmers adhere to programming rules

Answer: C

Vulnerabilities normally occur in software because programmers rarely
adhere to programming rules, ignore computer system elements and

program in an unsafe environment.

 5.0 Conclusion

You have learnt from this unit that defects in software lead to
vulnerabilities that can be exploited by cybercriminals to launch an attack

on your computer. Network engineers, software developers and computer
users should safeguard their computers and software from vulnerabilities.

51

 6.0 Summary

In this unit, you have learnt the detail of vulnerabilities that can be

exploited by cybercriminals to launch an attack on your computer
software. You have also learnt about the possible damages these

vulnerabilities can cause to your computers. In the next unit, you will
learn about secure programming for the prevention of BOF, FSB, SQLI,

XSS, session attacks.

7.0 References/Further Reading

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R.

(2008). Software Security Engineering. Pearson India.

Axelrod, C. W. (2013). Engineering Safe and Secure Software Systems.

Artech House.https://us.artechhouse.com/Engineering-Safe-and-
Secure-Software-Systems-P1556.aspx

Fernandez, E. B. (2004, June). ―A Methodology for Secure Software

Design.‖ In: Software Engineering Research and Practice (pp. 130-
136).http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.

2972&rep=rep1&type=pdf

Howard, M., LeBlanc, D., & Viega, J. (2005). 19 Deadly Sins of Software
Security. Programming Flaws and How to Fix

Them.http://math.uaa.
alaska.edu/~afkjm/cs470/handouts/SecuritySins.pdf

Ransome, J., & Misra, A. (2018). Core Software Security: Security at the

Source. CRC press.https://www.crcpress.com/Core-Software-

Security-Security-at-the-Source/Ransome-
Misra/p/book/9781466560956

Viega, J., & McGraw, G. (2011). Building Secure Software: How to Avoid

Security Problems the Right Way (paperback) (Addison-Wesley
Professional Computing Series). Addison-Wesley Professional.

https://www.oreilly.com/library/view/building-secure-software/
9780672334092/

https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.2972&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.2972&rep=rep1&type=pdf
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.oreilly.com/library/view/building-secure-software/%209780672334092/
https://www.oreilly.com/library/view/building-secure-software/%209780672334092/

52

Unit 5: Secure Programming for
Preventing BOF, FSB, SQLI, XSS,

Session

Contents
1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
 3.1 Secured Programming

3.2 Software Security Vulnerabilities
 3.2.1 Buffer Overflow (BOF)

3.3.2 Format String Bug (FSB)
3.2.3 SQL Injection (SQLI)

3.2.4 Cross-Site Scripting (XSS)
3.2.5 Session

3.3 Preventing mechanism against BOF, FSB, SQLI, XSS, session
3.2.1 Security Requirements Definitions

3.2.2 Model Threats
4.0 Self-Assessment Exercise(s)

5.0 Conclusion
6.0 Summary

7.0 References/Further Reading

1.0 Introduction
Today‘s software is implemented using different programming languages

that have severe vulnerabilities that cybercriminals exploit to breach a
program or a computer system. The most common vulnerabilities found in

software include the buffer overflow, format string bug, SQL injection,
cross-site scripting and session. These vulnerabilities are exploited in true

life resulting in damages to stakeholders such as the users of the
software. In this unit, you will learn the mechanism for preventing these

vulnerabilities as part of software design.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 explain secure programming

 utilise BOF, FSB, SQLI, XSS, session threats to solve real-life

problems
 manage the techniques for preventing BOF, FSB, SQLI, XSS,

session.

53

3.0 Main Content

3.1 Secure Programming
Secure programming is a mechanism for creating computer software to

prevent accidental vulnerability entry. Defects, bugs and logic defects are
the main cause of software vulnerabilities that are frequently exploited by

cybercriminals and malware designers for launching their attack on
intended victims.

3.2 Software Security Vulnerabilities
Vulnerabilities in software are defects in program code resulting in safety

breaches such as leakage, alteration and destruction of sensitive data.
Note that cybercriminals are effective in exploring vulnerabilities. There is

so much vulnerability in the software that attackers can exploit. We limit
our discussion on four (4) vulnerabilities. These include the buffer

overflow, format string bug, SQL injection, and cross-site scripting. These
are the most frequently reported vulnerabilities in software.

3.2.1 Buffer Overflow (BOF)
Buffer overflow (BOF) enables information to be written to a program

buffer exceeding the assigned size, thereby overriding the content of
adjacent memory locations.

Using a buffer overflow allows an attacker to control, crash, or alter the

program. There are various buffer overflow attacks categories.

Where are BOF normally encountered?

BOF is normally encountered in programs with unsafe library function

calls, absence of null character at the end of buffers, pointer, and
restriction to buffer access, logic mistakes and non-sufficient check before

buffer access.

Types of buffer overflow attacks
Buffer overflow attacks are classified into four kinds based on buffer

location in a program or process

 Stack-based buffer overflow: This type of buffer overflow uses a
memory object known as a stack to store user input in this sort of

attack. The stack is a continuous memory space used to organise
function call-related data, including function parameters, local

variables, and information on management, such as frame and
instruction pointers.

54

 Heap-based attacks: The heap is a memory structure used to
handle dynamic memory. Often programmers use the heap to

allocate memory whose size is unknown at the time of compilation,
where the amount of memory required is too large to fit on the

stack or where the memory is intended for use across function calls.
The memory space reserved for a program or process is flooded by

heap attack.

 Integer overflow attacks: This is when an integer is used in an
arithmetic operation, and the calculation outcome is a value that

exceeds the integer's maximum size. Most languages of
programming define maximum integer sizes. The result may cause

an error if these sizes are exceeded, or it may return an incorrect
result that is "wrapped around" within the length limit of the

integer.

 Unicode overflow attacks: Unicode characters are used by

attackers to generate buffer overflows in programs that expect all
input to be ASCII characters.

3.3.2 Format String Bug (FSB)
Format string bug (FSB) vulnerabilities indicate the invocation of the

format features with a format string that is provided by a user containing
arbitrary format specifications. As a result, the number of specifiers

becomes more than the number of arguments, allowing arbitrary read
and write in functions and stack format.

3.2.2 SQL Injection (SQLI)
SQLI vulnerabilities can be found in programs that produce SQL queries

with invalidated user inputs. The inputs may comprise arbitrary SQL
queries that change the queries that were originally designed. These

vulnerabilities are normally exploited by attacking SQL injection causing
unexpected outcomes such as bypassing authentication and leakage of

data.

3.2.3 Cross-Site Scripting (XSS)
XSS vulnerabilities enable HyperText Markup Language (HTML) content to

be generated with invalidated inputs. These inputs comprise HTML tags

and JavaScript code that browsers interpret as internet pages are
rendered. As a consequence, the designed conduct of the generated web

pages changes visibly.

55

3.3 Preventing Mechanism against BOF, FSB,

SQLI, XSS, Session

Program security breaches are mostly blamed to programmers who
overlook possible vulnerabilities in their software implementation.

Moreover, the lack of understanding of a programming language
implementation also contributes to writing codes that are vulnerable.

Secured programming approaches are designed to provide vulnerability

free support for programming implementation and can be regarded as the
first line of defence to prevent breaches of program safety. Writing safe

code helps to reduce subsequent vulnerability detection and fixation
expenses at later phases. Secure solutions to programming provide

support in the form of secure API, libraries, aspect and filters. There are
two approaches to secure programming, which includes security

requirement definition and model threats.

3.3.1 Security Requirements Definitions
This involves identifying and documenting safety requirements in the
early cycle of development and ensuring that subsequent development

artefacts are assessed to meet those demands. If safety requirements are
not defined, the resulting system security cannot be assessed efficiently.

3.3.2 Model Threats
This involves the use of threat modelling in anticipation of threats the

software might face. Threat modelling includes identifying important
assets, decomposing the application, identifying and categorizing threats

to each asset or element, assessing threat based on a risk ranking and
creating threat mitigation approaches in models, codes and test cases.

Discussion

How important is security requirement definition considering the secure

development process?

 4.0 Self-Assessment Exercise(s)

1. What do you understand by secured programming?

a. Secured programming is the mechanism for creating a
software devoid of accidental vulnerability entry

b. Secured programming is the mechanism for creating security
codes

56

c. Secured programming is the mechanism for creating security

protocol
d. None of the option mentioned

Answer: A

Secured programming is the mechanism for creating software devoid of

accidental vulnerability entry.

2. Which among the option is a cause of vulnerability in software?
a. Code defect

b. Logic defect
c. Bugs

d. object

Answer: D

The main causes of vulnerability in software are code defect, logic defect

and bugs.

 5.0 Conclusion

You have learnt from this unit that vulnerabilities found in software are

defects in program code resulting in safety breaches such as leakage,
alteration and destruction of sensitive data. These leakages are blamed to

programmers who overlook possible vulnerabilities in their software
implementation and lack of understanding of a programming language

implementation.

Assignment

A software was developed for company A to take input from users, from

the SDLC input validation was not considered during the development
stage, List the possible attack that the software is vulnerable and explain

why

 6.0 Summary

At the end of this unit, you have learnt about the most common

vulnerabilities found in software which include the buffer overflow, format
string bug, SQL injection, cross-site scripting and session. You have also

learnt the mechanism for preventing these vulnerabilities as part of

software design. In the next unit, you will be learning about mobile
application development security.

57

7.0 References/Further Reading

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R.
(2008). Software Security Engineering. Pearson India.

Axelrod, C. W. (2013). Engineering Safe and Secure Software Systems.

Artech House.https://us.artechhouse.com/Engineering-Safe-and-
Secure-Software-Systems-P1556.aspx

Fernandez, E. B. (2004, June). ―A Methodology for Secure Software

Design.‖ In: Software Engineering Research and Practice (pp. 130-
136).http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.

2972&rep=rep1&type=pdf

Howard, M., LeBlanc, D., & Viega, J. (2005). 19 Deadly Sins of Software

Security. Programming Flaws and How to Fix
Them.http://math.uaa.alaska.edu/~afkjm/cs470/handouts/Security

Sins.pdf

Ransome, J., & Misra, A. (2018). Core Software Security: Security at the
Source. CRC Press.https://www.crcpress.com/Core-Software-

Security-Security-at-the-Source/Ransome-
Misra/p/book/9781466560956

Viega, J., & McGraw, G. (2011). Building Secure Software: How to Avoid

Security Problems the Right Way. (paperback)(Addison-Wesley
Professional Computing Series). Addison-Wesley Professional.

https://www.oreilly.com/library/view/building-secure-software/
9780672334092/

https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.2972&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.2972&rep=rep1&type=pdf
http://math.uaa.alaska.edu/~afkjm/cs470/handouts/SecuritySins.pdf
http://math.uaa.alaska.edu/~afkjm/cs470/handouts/SecuritySins.pdf
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/9781466560956
https://www.oreilly.com/library/view/building-secure-software/%209780672334092/
https://www.oreilly.com/library/view/building-secure-software/%209780672334092/

58

Unit 6: Mobile Application Development
Security

Contents
1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

 3.1 Mobile Application Security
3.2 Building Secure Mobile Application

 3.2.1 Writing Secure Code
3.3.2 Data Encryption

3.2.3 Caution Using Libraries
3.2.4 Authorised API Usage

3.2.5 Use Good Authentication

3.2.6 Develop Temper Detection Techniques
3.2.7 Least Privileges

3.2.8 Session Management
3.2.9 Repeated Testing

4.0 Self-Assessment Exercise(s)
5.0 Conclusion

6.0 Summary
7.0 References/Further Reading

1.0 Introduction

Mobile application development security is the extent to which mobile
device applications (apps) are protected from malware and cracker and

other criminal operations. The word may also refer to multiple techniques
and manufacturing methods that through their applications, minimize the

danger of exploits on mobile devices. In this unit, you will learn the

techniques for building secure mobile applications.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 manage the techniques for preventing BOF, FSB, SQLI, XSS,

session
 describe the process of building a secure mobile application.

59

3.0 Main Content

3.1 Mobile Application Security

Mobile application security is the degree to which cell phone applications

are shielded from malware, crackers and other crimes. The term may
likewise allude to different advancements and practices that limit the

danger of a cyber-attack on mobile devices through its application.

There are many elements in a mobile device, all susceptible to security
weaknesses. Multiple players make, distribute and use these elements,

each of whom plays a vital part in a device's security. Each player should
integrate safety measures in the design and construction of mobile

devices and the design and writing of mobile applications, but these tasks
are not always performed properly. Common mobile device vulnerabilities

include architectural flaws, loss or theft of devices, platform weakness,

problems with isolation and permission, and application weakness.

3.2 Building Secure Mobile Application

Mobile application development is fast-growing, and with this growth

pace, mobile application designers need to look at not only at offering
clients with fresh characteristics but also at the application security

aspect.

The security of mobile applications is one of the primary concerns these
days as data residing within the application may be at risk if proper

security checks are not applied during application design. Furthermore,
owing to the massive use of mobile application in today‘s digital globe,

vulnerabilities in mobile applications have risen significantly.

Hackers are now targeting mobile applications to gain access to personal

information and information about consumers to use it maliciously.
Therefore, as mobile developers construct an application for bot IoS and

Android platforms, they must be extra cautious.

Some of the ways to build a fully secured mobile application are discussed
in the subsequent subsections.

3.2.1 Writing Secure Code
The code is the most susceptible characteristics of any mobile application

that hackers can readily exploit. Therefore, writing an extremely safe
code is crucial. According to studies, about 11.6 million devices are

impacted by malicious code.

60

How do hackers make use of application code?

Hackers can reverse and engineer your application code to use it in the

wrong way, so try to create a hard code that is not easy to crack and
follow agile development so that you can quickly patch and update your

code from time to time. In order to create the highest values of software,
some of the other best is code hardening and signing.

3.3.2 Data Encryption
Encryption is the way the transmitting information can be converted into

such a form that nobody else can read it without decryption. Encryption is
usually done so that even if the data from the mobile application is stolen,

it cannot be decrypted by the hackers, and as is the stolen data is
worthless to them. Therefore, try developing an application to encrypt all

the information in the application.

3.2.3 Caution Using Libraries
The mobile application developer often requires third-party libraries to
build his codes. Do not trust any library to build your application as most

of these libraries are not safe. When using libraries, always try testing
your code to make sure your program is malware free. This is to avoid

library flaws allowing malicious code to be used by cybercriminals to
attack the system.

3.2.4 Authorised API Usage
Always remember to use your mobile application code with authorized

APIs. It always provides the privilege of using your data to hackers. For
instance, hackers can use the authorisation data caches to obtain system

authentication.

3.2.5 Use Good Authentication
Authentication mechanisms are the most important components of safety
for mobile applications. One of the top vulnerabilities in mobile

applications is weak authentication. As a developer and user, from a
safety point of view, authentication should be regarded essential.

Password is one of the most common methods of authentication, so
password should be strong enough so that it cannot be broken.

3.2.6 Develop Temper Detection Techniques
This technique is used to receive an alert when changing or modifying

your code. Often, a log of code modifications to your mobile application is
vital to prevent a malicious programmer from injecting poor code into

your application. Try to have triggers intended to maintain activity logs
for your application.

61

3.2.7 Least Privileges
The least privilege principle is often essential for the safety of the mobile
application code. Only those who intend to receive them should have

access to the code, and the rest should not be given the privileges,
keeping it to a minimum.

3.2.8 Session Management
Session handling is significant in mobile application development as

mobile sessions are generally longer than desktop sessions. Session
management should, therefore, be performed to preserve the safety of

stolen and lost devices and should be performed using tokens rather than
identifiers.

3.2.9 Repeated Testing
Repeated testing for modification is the easiest solution for a secure

mobile development application. This is because safety elements change
every day. To safeguard, your mobile application, you need to be

updated with safety trends. You should opt for penetration testing and
emulators to get an idea of your mobile application vulnerabilities so they

can be eliminated or reduced.

Assignment
Encryption is important for the transmission of sensitive data, Explain the
importance of encryption and possible attack against that can affect the

process of data transmission.

 4.0 Self-Assessment Exercise(s)

1. What are the two ways of creating a high-value software code in a
mobile application?

a. Code hardening and softening
b. Code hardening and signing

c. Code Softening and signing

d. None of the mentioned option
Answer: B

The two best ways to create the highest values of software are to

use code hardening and signing.

2. Encryption is usually done so that even if the encrypted data is
stolen, it cannot be decrypted by the attackers, which makes the

stolen data worthless to them.
a. True

b. False
Answer: A

62

 5.0 Conclusion

You have learnt from this unit that it is important to build secure mobile
applications whose component are safely guarded against security

vulnerabilities and cyber-criminal attacks such as malware, cracker and
other criminal operations.

 6.0 Summary

At the end of this unit, you have learnt the techniques for building a

secured mobile application devoid of vulnerabilities.

7.0 References/Further Reading

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R.

(2008). Software Security Engineering. Pearson India.

Ammann, P., & Offutt, J. (2016). Introduction to Software Testing.

Cambridge University Press.https://cs.gmu.edu/~offutt/
softwaretest/

Axelrod, C. W. (2013). Engineering Safe and Secure Software Systems.

Artech House.Https://Us.Artechhouse.Com/Engineering-Safe-And-
Secure-Software-Systems-P1556.Aspx

Fernandez, E. B. (2004, June). ―A Methodology for Secure Software

Design.‖ In: Software Engineering Research and Practice (pp. 130-
136). http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.83.2972&rep=rep1&type=pdf

Howard, M., LeBlanc, D., & Viega, J. (2005). 19 Deadly Sins of Software
Security. Programming Flaws and How to Fix Them. http://math.

uaa.alaska.edu/~afkjm/cs470/handouts/SecuritySins.pdf

McGraw, G. (2006). Software Security: Building Security In. (Vol. 1).

Addison-Wesley Professional.https://www.oreilly.com/library/view/
software-security-building/0321356705/

Ransome, J., & Misra, A. (2018). Core Software Security: Security at the

Source. CRC press.https://www.crcpress.com/Core-Software-
Security-Security-at-the-Source/Ransome-Misra/p/book/

9781466560956

https://cs.gmu.edu/~offutt/%20softwaretest/
https://cs.gmu.edu/~offutt/%20softwaretest/
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
https://us.artechhouse.com/Engineering-Safe-and-Secure-Software-Systems-P1556.aspx
http://citeseerx.ist.psu.edu/viewdoc/download?doi=%2010.1.1.83.2972&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=%2010.1.1.83.2972&rep=rep1&type=pdf
https://www.oreilly.com/library/view/%20software-security-building/0321356705/
https://www.oreilly.com/library/view/%20software-security-building/0321356705/
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/%209781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/%209781466560956
https://www.crcpress.com/Core-Software-Security-Security-at-the-Source/Ransome-Misra/p/book/%209781466560956

63

Viega, J., & McGraw, G. (2011). Building Secure Software: How to Avoid

Security Problems the Right Way. (paperback)(Addison-Wesley
Professional Computing Series). Addison-Wesley Professional.

https://www.oreilly.com/library/view/building-secure-
software/9780672334092/

https://www.oreilly.com/library/view/building-secure-software/9780672334092/
https://www.oreilly.com/library/view/building-secure-software/9780672334092/

64

Module 3: Design and Testing for Security,

Best Practices

Module 3: Design and Testing for Security, Best

Practices

Unit 1: Secure Software Design Principles
Unit 2: Static Analysis Techniques

Unit 3: Security Testing

Introduction

In software security, the threat is often anybody who intends to harm
using some software agents. In most cases, the software can be subject

to either threat during development or threat during operation. Also,
weaknesses likely to be targeted are those found in the software

components' external interfaces, because those interfaces provide the
attacker with a direct communication path to the software's

vulnerabilities. Several well-known attacks target software that
incorporates interfaces, protocols, design features, or develops faults that

are well understood and widely publicised as harbouring inherent

weaknesses. It is therefore very important to consider security right from
early design through to the implementation and testing phases of the

software development life cycle.

In this module, you are going to learn how to effectively perform
continuous auditing and monitoring to maintain the security state of your

organization‘s information system. You are going to learn several
architectural and design principles for developing a secure software

system, as well as several techniques and methods for analysing and
identifying architectural flaws, and development bugs. You are also going

to learn several source code analysis techniques, including static code
review and security testing.

The module is organised into three units as follows:

Unit 1: Secure Software Design Principles
Unit 2: Static Analysis Techniques

Unit 3: Security Testing

65

Unit 1: Secure Software Design
Principles

Contents
1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

 3.1 Overview of Secure Software Design Principles
3.2 Secure Software Practices for Design

3.3 Basic Secure Design Principles
4.0 Self-Assessment Exercise(s)

5.0 Conclusion
6.0 Summary

7.0 References/Further Reading

 1.0 Introduction

In this unit, you are going to learn different practices for designing secure
software; you are also going to learn fundamental design principles that

you can adopt in designing secure software application.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 describe the principles of secure software design

 explain the concept of secure characterisation
 apply the Software security design principles to maintain

confidentiality, integrity, and availability of a system, sub-system,
and system data.

 3.0 Main Content

3.1 Overview of Secure Software Design

Principles

Software design phase translates and transforms ideas into reality. The

what and why of the requirements phase becomes who, when, where and
how of the software. This phase is as critical as the requirements phase in

terms of contribution towards overall success and quality of the eventual

66

deliverable, from a functionality perspective. In terms of security,

architecture and design are seen by many as the most critical phase of
the Software Development Life Cycle (SDLC). This is because, good

design decision yields an approach and structure that are resistant and
resilient to attack, and also, prescribe and guide good decision in later

phases, for instance, coding and testing. However, bad design leads to
flaws that may be difficult to overcome by even most disciplined code and

test efforts.

Although much security efforts are put in tackling implementation
challenges, such as buffer overflow, sql injection, and other bugs, the

reality, however, is that most defects that lead to security vulnerabilities
in software are attributed to architectural and design flaws. These flaws

tend to have a greater footprint in terms of potential security impact and
exploit within a piece of software and potentially across multiple systems

and projects. Hence, the goal of integrating security into the design phase

of SDLC is to reduce the number of flaws significantly, as early as possible
while also minimising ambiguities and other weaknesses.

3.2 Secure Software Practices for Design

To integrate security into the design phase of SDLC, the practice of risk
analysis is important. Architectural risk analysis ensures that security

concerns of architectural and design-level are identified and addressed
early in the SDLC. This results in an improved attack resistance level,

tolerance and resilience.

Risk analysis identifies potential threats, and the identified threats are
mapped to the risks they bring. These risks are the likelihood of a given

threat exploiting a particular vulnerability, with the impact the harmful

event may have on the asset. Threats to the software must be analysed
to understand the likelihood of an attack; you also analyse potential

vulnerabilities, as well as security controls in place for the software. The
risk analysis methodology is discussed below:

 Software Characterisation

The first step of any software risk analysis is to understand what the kind
of software, and how it works. For design risk analysis, the minimal

understanding required is the system‘s description using high-level
diagramming techniques. A common diagramming format that has proven

itself to be effective for architectural risk analysis is a whiteboard-type,
high-level, one-page diagram that shows how components are connected

together, as well as how control and data flow are managed. The diagram
is important in identifying architecture and design-level flaws that are

hard to detect during the code-level review.

67

To gather information for software characterisation, a wide spectrum of

system‘s artefacts are reviewed, interviews are also conducted with key
stakeholders such as program/product managers, and software architects.

Some of the artefacts to review for software characterization includes:
o Business case of the Software

o Functional and nonfunctional requirements
o Requirements enterprise architecture

o Use case description documents
o Misuse or abuse case documents

o Software architectural documents that describe physical, logical,
and process views

o Data structure documents
o Design documents including UML diagrams showing structural, and

behavioural aspects of the system
o Risk management plan

o Software acceptance plan

o Problem resolution plan
o Transactions security architecture documents

o Configuration and change management plan
o Identity services and management architecture documents

The goal of software characterisation activity is to produce documents

depicting vital relationships among critical parts of the system. Figure 3-1
shows an example of a high-level software architecture diagram. The

diagram shows major system components, interactions among
components, and various zones of trust (areas that share common level

and management mechanism of privilege). Avatars and their associated
arrows show potential attackers with attack vectors against the system.

The potential threats and attack vectors are further broken down in more
details during the subsequent stages of architectural risk analysis.

 Threat Analysis
Threats violate the protection of information assets and security policy.

Threat analysis aims at identifying relevant threats for a particular
functionality, architecture, and configuration. During this stage,

vulnerabilities are mapped to the identified threats, understand how the
software may be exploited. The mitigation plan is developed, that consists

of countermeasures considered effective against identified vulnerabilities.

Why is architectural vulnerability assessment important in secure
application development?

 Architectural Vulnerability Assessment

Vulnerability assessment examines the conditions that must exist before
vulnerabilities can be exploited, and assesses the state of the software

after exploitation. There are three (3) activities for architectural

vulnerability assessment, as discussed below:

68

1. Attack Resistance Analysis: This is a process of inspecting the
software design to find common weaknesses, which could lead to

vulnerabilities and susceptibility of the system to common attack
patterns. To perform attack resistance analysis, you consider your

architecture and compare it with some known bad practices, as well
as known good practices. For instance, you may consider the

principle of least privilege (discussed in section 3.3), which states
that all operations on the software should be done with the least

possible privilege required for that operation. Here, you find areas
in the software that operates at an elevated level of privilege. You

can achieve this by perhaps drawing the system‘s major
components, classes, and subsystems. You then circle the areas of

high privilege against areas of low privilege. You then consider the
boundaries between identified areas and understand the type of

communications that happens across the boundaries. Once these

vulnerabilities are identified, you map the relevant attack patterns
against the architecture, with special consideration given to areas of

identified vulnerability. Finally, you should capture and quantify any
attack that found to be viable against identified vulnerabilities as a

risk to the software.

2. Ambiguity Analysis: Ambiguity is a source of vulnerability if it
exists between specifications and development. Design plays an

important role in eliminating potential misunderstandings between
business requirements and the implementation of the software‘s

actions. During this activity, you examine all artefacts that define
software‘s functions, structure, properties and policies for any

ambiguity in the description that may lead to multiple
interpretations. This is because multiple interpretations constitute a

risk to the software. At this stage, you take note of places where

either the requirements or architecture are defined ambiguously.
You may also note places where architecture and implementation

disagree or fail to resolve the ambiguity. Consider a scenario where
a ―requirement for web application states that an administrator can

lock an account such that user can no longer log in while the
account remains locked‖. Now, this requirement raises some

important questions; for instance, what will happen to sessions of a
user who is an active administrator locks the account? Is the user

forcibly logged out? Or does active session remain valid until the
user logs out? To answer these questions, the authentication and

authorisation architecture must be compared with the actual
implementation in an existing system. You should balance the

security consequences that continue to exist even after the account
has been locked against sensitive information asset you are trying

to protect.

69

3. Dependency Analysis: This activity involves analyzing

vulnerabilities associated with the execution environment of the
software. It may include vulnerabilities associated with the

operating system, network vulnerabilities, and interaction
vulnerabilities that emerge from components interaction.

Dependency analysis is aimed at developing a list of software or
system vulnerabilities that could be triggered accidentally or

intentionally, that leads to a violation of security policy or security
breach.

What would you use as metrics to estimate the likelihood of a risk?

 Risk Likelihood Determination

This is a qualitative estimate likelihood of a successful attack. It is done
based on analysis, as well as past experience. Three factors described

below can be used to estimate the likelihood of risk.

o Threat‘s motivation and capability, e.g. a paid hacker who is paid by
the criminal organisation to hack is more highly motivated than a

college student that hack for fun.
o Vulnerability impact

o Effectiveness of current control, e.g. compromising two-factor
authentication systems can be harder than compromising simple

user IDs and passwords.

You can estimate risk likelihood by rating it as High, when all three
factors are weak (threat is capable and motivated, there is severe

vulnerability, and prevention controls are not very effective). Medium,
when one of the three factors is compensating, but the other two are not.

Low, when at least two of the three factors are compensating.

 Risk Impact Determination

This activity analyses the consequences a business may face if the worst-
case scenario happens. Three aspects of risk impact determination are

discussed below:
o Identify Threatened Assets: You should identify assets

threatened by a realisation of the risk; you should also identify the
nature of what will happen to these assets.

o Identify Business Impact: Here, you identify the extent to which
business will suffer if an attack takes place.

 Risk Mitigation Planning

Mitigation of risk involves changing the software architecture in one way
or the other to reduce the risk likelihood or its impact. Several measures

can be taken to reduce the likelihood of risk, as discussed below:
o Raising the bar in terms of skill required to exploit the vulnerability.

For instance, you may change the authentication mechanism from

70

IDs and passwords to pre-shared public key certificates. This could

make impersonation very difficult.
o Reduce the period from which vulnerability is available for exploit.

For instance, if the session expires after 15 minutes of inactivity,
then the opportunity window for session hijacking is about 15

minutes.
o Cryptography could help when correctly applied. For instance,

detecting corruption in encrypted data is easier than in unencrypted
data, and encrypted data is more difficult for an attacker to use.

You are to develop a software application for a bank to process an

important document, what are the secure design principle to consider.

3.3 Basic Secure Design Principles

Secure Design Principles are fundamental truth upon which software is

built in order to be robust against attack. These high-level practices are
derived from real-world experience to guide software developers in

building secure software. Leveraging these principles can benefit the
development team with the industry‘s leading practitioners guidance and

learn to ask the right questions of their software architecture and design
in order to avoid the most serious flaws. The basic principles are

discussed below and depicted in figure 6.

 Principle of Least Privilege: This principle states that each
component in the system should be allocated minimum necessary

right to fight its functions, nothing more. This principle is effective
in reducing insecurity influence of component failure and effective in

reducing the effort required in security evaluation of the
component.

Fig. 6: Basic Secure Design Principles

 Principle of Fail Safe and Fail Secure: This principle states that

when the system fails, the system‘s mechanism or function should
not lead violation of security policy. Preferably, the system should

detect a failure at any point during operation, including

71

initialization, maintenance, normal operation, shutdown, error

detection, and recovery.
 Least common mechanism: The principle states that mechanisms

of the system should not be shared by the user except when
necessary. Since shared mechanisms sometimes lead to unintended

means of interference.
 Separation of Duties: The principle requires the user to have

multiple privileges to accomplish a large range of security
compromise. Programs and systems should grant access to assets

only when the entire condition is met. It provides control over the
resources and extra guarantee that the system access is authorised.

 Simplicity: The principle states that complexity does not add
security. The simpler the system, then less can go wrong because

when an error happens, it becomes simpler to understand and fix.
 Secure Weakest Link: Attackers often targets the weakest link in

the system. To ensure secure design, identify the weakest point of

compromise in the system. The weakest point is, mostly, trusted
third-party components. Ensure these points are secure enough.

 Defence in Depth: This principle describes the defence derived
from implementing multiple defence mechanisms.

 Trust Nobody: This principle states that all employees, users, and
other third parties, may turn malicious to the system. Hence, don‘t

trust them completely.
 Leverage Existing Components: The principle promotes the

concept of reuse of existing secure components. It states that using
existing, well-tested resources safer than developing new

components.

 4.0 Self-Assessment Exercise(s)

1. One of the secure design principles suggests that Granting

permissions to a user beyond the scope of the necessary rights of

action can allow that user to obtain or change the information in
unwanted ways. Which principle is it?

a. Least common mechanism
b. Separation of duties

c. Principle of least privilege
Answer: B

2. Which principle suggests that defending an application with multiple

layers can eliminate the existence of a single point of failure that
compromises the security of the application?

a. Simplicity
b. Defence In Depth

c. Leverage Existing Components
 Answer: B

72

 5.0 Conclusion

The architecture and design phase of the SDLC is a critical stage for
identifying and preventing security flaws before they become part of the

software. As the connectivity, complexity, and extensibility of software
increase, the importance of addressing security concerns as an integral

part of the architecture and design process becomes even more critical.
During this phase, designers and security analysts leverage security

design practices to ensure that requirements are appropriately interpreted
to give the software structure and form in a way that minimises the

security risk.

Assignment
A company wants to know what to consider to build a secure web
application, list, and explain the steps that you will recommend base on

what you have learned in this unit.

 6.0 Summary

In this unit, you should get the following key points:
o Good design decision yields an approach and structure that are

resistant and resilient to attack.
o Software characterisation, threat analysis, architectural vulnerability

assessment, risk likelihood determination, risk impact
determination, and risk mitigation planning are effective design risk

analysis methodologies for identifying potential design flaws and

identifying their control mechanisms.
o Secure design principles are high-level practices that are derived

from real-world experience to guide software developers in building
secure software.

o Leveraging these principles can benefit the development team with
the industry‘s leading practitioners' guidance and learn to ask the

right questions of their software architecture and design to avoid
the most serious flaws.

73

7.0 References/Further Reading

McGraw, G. (2006). Software Security: Building Security In. Boston, MA:
Addison-Wesley, https://www.oreilly.com/library/view/software-

security-building/0321356705/

Merkow, M., & Raghavan, L. (2010). Secure and Resilient Software
Development. New York: Taylor & Francis

Group.https://doi.org/10.1201/EBK1439826966

https://www.oreilly.com/library/view/software-security-building/0321356705/
https://www.oreilly.com/library/view/software-security-building/0321356705/
https://doi.org/10.1201/EBK1439826966

74

Unit 2: Static Analysis Techniques

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
 3.1 Overview of Code Analysis

3.2 Common Software Code Vulnerabilities

3.3 Source Code Review
 3.3.1 Automated Static Code Analysis

4.0 Self-Assessment Exercise(s)
5.0 Conclusion

6.0 Summary
7.0 References/Further Reading

 1.0 Introduction

In this unit, you are going to learn about different implementation level
defects. You will also learn how to discover these defects, following

manual source code review process. Finally, you will know more about
how to do static code analysis, with different automated static analysis

tools.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 explain the overview of code analysis
 analyse and debug software code without executing it

 identify common software vulnerability.

 3.0 Main Content

3.1 Overview of Code Analysis

Most attacks on software applications arise because of defects in its
design, coding, testing, as well as operation. Defects often fall under any

one of the following two categories:
 A Bug, which is a problem introduced during implementation.

Examples of bug include race condition, buffer overflow, unsafe
system calls, and incorrect input validation.

75

 A Flaw, which is a problem at a much deeper level. They were

mostly originating from design and instantiated in the code.
Examples are compartmentalisation problems in the design, error-

handling problems, and broken or illogical access control.

Software security problems are divided 50/50 between bugs and flaws.
Therefore, discovering and eliminating bugs during code analysis takes

care of roughly half the problem of software security. Code analysis
focuses on addressing implementation level bugs.

3.2 Common Software Code Vulnerabilities

Some of the common security implementation bugs are discussed below:
o Incorrect or incomplete input validation: Inadequate input validation

leads to several bugs, such as buffer overflow and SQL injection,
which can compromise the integrity and confidentiality of the

system.
o Exception handling: Exceptions are events that disrupt the normal

flow of code. Security defects related to error handling are very
common. A bug could emerge when you forget to handle errors or

were handled roughly - for instance, having unchecked error value
and empty catch block.

o Buffer overflow: Buffer overflows are very common bugs used to

exploit software by injecting malicious code remotely into a target
software.

o SQL injection: Developers often chain SQL commands together with
user-provided parameters. Hence, attackers exploit this and embed

SQL commands to these parameters and execute arbitrary SQL
queries or commands on the database server through the

application.
o Race conditions: Race conditions are often characterised as

scheduling dependencies between multiple threads that are not
synchronised properly, which may cause undesirable timing of

events. Security concern may arise when specific events sequence
is needed between, say Event X and Event Y, but a race occurs, and

the proper sequence is not ensured by the program. Example of
race condition bug includes deadlock, infinite loop, and resource

collision.

3.3 Source Code Review

Source code review for security is an effective practice that enhances
software security. Code review is about finding and fixing the bug. It

involves reviewers meeting one-on-one with developers to visually review
code and check whether it meets secure code development criteria. The

76

code review process consists of four high-level steps, as shown in figure

7.

First step of the review process involves understanding the purpose of the
application, internal design of the system, and the threat models prepared

for the application. This step is important for identifying critical
components of the code and assigning priorities to them. Prioritising is

important, as full coverage may be unrealistic. Hence most critical
components should be reviewed completely.

Second step involves reviewing the identified critical components

according to their priority. All the identified defects should be
documented, and appropriate priorities should be assigned. Reviewers

then should document these defects together with suggested fix
approaches for each to ensure they do not creep into the final production

code.

Third step of a code review is implementing the fixes for the problems

revealed in the review. It may involve integrating an existing, reusable
security component available to developers, or may require simple or

even complex changes to the code and subsequent reviews.

Fig. 7:The Code Review Process

(Source: Slideshare.net)

The final step involves studying the lessons learned during the review
cycle and identifying areas for possible improvements. This ensures that

the next code review cycle is more efficient and effective.

Examples of critical components that require an intense review and
analysis are user authentication and authorisation, data protection

77

routines, code involved in handling error conditions, data validation

routines, code that receives and handles data from untrusted sources,
usage of operating system resources and networks, usage of

problematic/deprecated APIs, etc.

What is the difference between manual code review and automated static
code analysis?

In a manual code review, reviewers and developers visually inspect the

code to determine whether it meets previously established secure code
development criteria. In automated static code analysis, developers

automate the analysis of source code by using static analysis tools.

Manual code inspection for security vulnerabilities is time-consuming. For

it to be effective, reviewers must know what security vulnerabilities look

like before they can examine the code rigorously and identify those
problems. For more effective and faster analysis, automated static

analysis tools can be used to complement manual reviews. These tools
can evaluate software programs more frequently; they can also

encapsulate security knowledge in a way that operator of the tool does
not need to have the same level of security expertise as a human

reviewer. Example of static code analysis tools are:
o Armorise CodeSecure (A commercial, multi-language with built-in

language parsers for analyzing C#, java, .NET, PHP, etc.).
o Coverity software integrity, which identifies vulnerabilities and

defects in C, C++, C#, and Java.
o RATS (Rough Auditing Tool for Security), An open-source multi-

language analyzer.
o Checkstyle, scans java code, also shows a violation of configured

coding standard.

3.3.1 Automated Static Code Analysis
Static source code analysis is the process by which developers check their
code for problems and inconsistencies before it is compiled. Automating it

involves the use of tools to scan the source code and automatically
detecting errors that typically pass through compilers and can cause

problems later in the SDLC. These tools generate reports that present

analysis results graphically, and recommend potential resolutions to the
identified problems.

Major advantage of static analysis is that it is performed before a program

reaches completion level, where dynamic analysis could be used.
However, static analysis too should not be considered as a panacea to all

potential problems. You should keep in mind that they can produce false
positives and false negative. Therefore, you should not consider results

indicating zero security defects to mean that your code is completely free

78

of vulnerabilities or 100 per cent secure. Instead, these results simply

mean that your code has none of the patterns found in rule-base of the
analysis tool for security defects. These tools look for a fixed set of

patterns or rules in the code in a manner similar to virus-checking
programs. While some of the more advanced tools allow new rules to be

added to the rule-base, the tool will never find a problem if a rule has not
been written for it. Examples of problems static code analysers can detect

are as follows:
o Syntax problems

o Unconditional branches into loops
o Unreachable code

o Parameter type mismatches
o Undeclared variables

o Non-usage of function results
o Uninitialised variables

o Uncalled functions and procedures

Static code analysis can be used to discover subtle and elusive

implementation bugs before the software is tested or placed into
operation. Correcting these errors earlier in the code could reduce testing

efforts, and costs of operations and maintenance will be minimised.

 4.0 Self-Assessment Exercise(s)

1. Which of the following is NOT an example of an implementation

bug?
a. compartmentalisation problems in the design

b. unsafe system calls
c. illogical access control

Answer: A

2. Which of the following problems can static code analysers detect?
a. Undeclared Variables

b. Buffer Overflow
c. Architecture flaws

 Answer: C

 5.0 Conclusion

We discussed that software defects cause the majority of software
vulnerabilities, and understanding the sources of vulnerabilities and

learning to program securely is essential for protecting the software from

79

attack. Common software bugs discussed in this unit include incomplete

or incorrect input validation, improper exception handling, sql injection,
buffer overflow, etc. Discovering and eliminating these bugs takes care of

roughly half the problem of software security. Code analysis detects
implementation level bugs. Several tools are available that automates

static code analysis, by scanning the code and generate reports that
present analysis result, with recommendations for potential resolutions to

the identified problems. We have seen that source code review could
reduce testing efforts, and minimise costs of operations and maintenance.

 6.0 Summary

In this unit, you should get the following key points:

o Software security problems are divided between bugs and flaws.
o Discovering and eliminating bugs solves roughly half the problem of

software security.
o Code analysis focuses on addressing implementation level bugs.

o The first step in the code review process involves understanding the

application‘s purpose, its internal design, and the threat models
prepared for the application and followed by reviewing the identified

critical components according to their priority. The third step
implements the fixes for the problems revealed in the review,

followed by studying the lessons learned during the review cycle,
and identifying areas for possible improvements.

o Static code analysis involves the use of tools to scan the source
code and automatically detecting errors that typically pass through

compilers and can cause problems later in the SDLC.

7.0 References/Further Reading

Allen, J., Barnum, S., Ellison, R., McGraw, G., & Mead, N. (2008).
Software Security Engineering. Massachusetts: Addison Wesley

Professional.

Allen, J. H.; Barnum, S. J.; Ellison, R. J.; McGraw, G. & Mead, N. R.
(n.d.). Software Security Engineering: A Guide for Project

Managers. Pearson Education ISBN-10:032150917X•ISBN-
13:9780321509178.

McGraw, G. (2006). Software Security: Building Security In. Boston, MA:

Addison-Wesley, 2006.https://www.oreilly.com/library/view/
software-security-building/0321356705/

https://www.oreilly.com/library/view/%20software-security-building/0321356705/
https://www.oreilly.com/library/view/%20software-security-building/0321356705/

80

Unit 3: Security Testing

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
 3.1 Overview of Security Testing

 3.1.1 Software Testing vs Software Security Testing

3.2 Black Box Security Testing
 3.2.1 Black Box Penetration Testing

 3.2.2 White Box Penetration Testing

4.0 Self-Assessment Exercise(s)
5.0 Conclusion

6.0 Summary
7.0 References/Further Reading

 1.0 Introduction

In this unit, you will learn penetration testing using white box approach,
and black box approach. You will be introduced to some tools used for

black box testing.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 discuss security testing on software using the black box and white
box

 explain the difference between software testing and software
security testing.

 3.0 Main Content

3.1 Overview of Security Testing

Security testing is mainly performed to show that software meets its

security requirements, identify and minimise the number of security
vulnerabilities in the software before going into production. Security

testing reduces the overall cost of the project, protects the reputation of

81

the organisation, reduces litigation expenses, and it helps in making sure

that the product complies with regulatory requirements.

The overall goal of security testing is ensuring the software is robust and
continues functioning acceptably even under malicious attack. Security

testing is influenced through probing undocumented assumptions and
regions of specific complexity to determine how a software program can

be broken. Designers and the requirement engineers would possibly
outline a secure design, and developers would probably be diligent and

develop secure code. Still, in the end, the testing method determines
whether the software is adequately secured as soon as it is fielded.

3.1.1 Software Testing vs Software Security Testing
A common misconception about bugs was that security bugs in a software

system were similar to traditional programming bugs and traditional
testing and quality assurance techniques could be used for secure

software development. However, developers have learned over time, that
security-related bugs could differ from traditional software bugs in many

ways. These traits, in return, influence the practices that you apply for
software security testing.

Security testing is different from conventional software testing because its

focus is on what the software should not do rather than what it should do.

Although in a few occasions, it also tests conformance to positive
requirements such as "User accounts are disabled after three unsuccessful

login attempts" and "Network traffic must be encrypted‖. In most cases,
however, it tests negative requirements such as "Outside attackers should

not be able to modify the contents of the Web page" and "Unauthorised
users should not be able to access data." Its focus on negative

requirements rather than positive affects the way this testing is
conducted. The best way to perform positive requirement testing is to

have a test case where the requirement is intended to be true and verify
the requirement is satisfied by the software. In contrast, the negative

requirement could state that something ought to have never occurred. To
perform standard testing approach to negative requirements, one would

need to create every possible set of conditions, which is not feasible.

Common software security testing method is penetration testing that

involves attacking the software to analyse its behaviour as a result of that
attack. Penetration testing and its approaches are explained in section

3.2.

Who is responsible for performing penetration testing?

82

3.2 Software Penetration Testing

Security testing is often called Penetration Testing (PenTest). It is
aimed at demonstrating that software meets specified security

requirements, and to identify and minimise the number of security
vulnerabilities in the software before it goes into use. Penetration testing

is performed outside the attacker‘s perspective (someone without inside
knowledge of the application) and involves exploiting identified

vulnerabilities to break the system or gain unauthorised access to
information. Its aim is not only limited to identifying potential

vulnerabilities but also to determine the exploitability of an attack and the
degree of impact of a successful exploit.

There are several activities involved in performing penetration testing,

which varies according to the application type. Figure 8 shows a sequence

of fundamental penetration testing activities that are common to most
applications.

Fig. 8: Fundamental Penetration Testing Activities

The first activity is the planning phase, which involves defining the
scope of the test, and defining the strategy that will be used for the test.

To define the scope of the test, you use the existing security policies as
well as standards of the organisation. The second activity is the

discovery phase that involves fingerprinting, that is collecting
information about the system, which includes the system‘s data,

usernames and passwords. It also involves checking for system
vulnerabilities. Attack phase involves finding exploits for all identified or

discovered vulnerabilities. The final activity is reporting phase, which
involves a detailed report of all findings, risks of the found vulnerabilities

with their impact, as well as recommendations and solutions.

Common penetration testing approaches are white box and black box

approaches discussed in sections 3.2.1 and 3.2.2.

83

3.2.1 Black box Penetration Testing
Black box testing involves a set of activities that occurs during the pre-
deployment test phase or periodically after a system has been deployed.

In this approach, a running program is analyzed and probed with various
inputs. It requires running a program only and doesn't use source code

analysis of any kind. Malicious input is supplied to the program to test an
application with this approach. The intention is to break it. If the program

breaks during a particular test, then the security problem might have

been discovered.

Black box penetration testing is automated, and some of the few
commercially available black box penetration testing tools and suites are:

o Cenzic Hailstorm (http://www.cenzic.com)
o HPWebInspect (https://h10078.www1.hp.com/cda/hpms/display/

main/hpms_content.jsp?zn=bto&cp=1-11-
201200^9570_4000_100__)

o IBM AppScan (http://www-01.ibm.com/software/awdtools/appscan)

Typically, these tools look for and report on the following vulnerabilities:
o Improper input validation

o Command injection and buffer overflow attacks
o SQL injection attacks

o Cross-site scripting vulnerabilities

o Cross-site request forgeries
o Directory traversal attacks

o Improper session management
o Improper authorisation and access control mechanisms

3.2.2 White Box Penetration Testing
White box analysis involves analysing and understanding both the source

code and the design. White box testing is very effective in finding
programming errors, and in some cases, it amounts to pattern matching,

often automated with a static analyser (discussed in unit 2). The major
drawback with this approach is that it can produce a false positive or false

negative result, as discussed in unit 2. Some of the tools available for
white box testing and bugs that they detect were discussed in Unit 2.

Regardless of whether a black or white box approach is used, any testing

method can reveal possible software risks and potential exploits. One
problem with almost all kinds of security testing is the lack of it. Most

organisations focus on features and spend very little time understanding
or probing nonfunctional security risks. Additionally, penetration testing

may not find all vulnerabilities in the system, and there may be some
limitations ranging from time, budget, scope, as well as skills of the

testers.

http://www.cenzic.com/
https://h10078.www1.hp.com/cda/hpms/display/%20main/hpms_content.jsp?zn=bto&cp=1-11-201200%5e9570_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/%20main/hpms_content.jsp?zn=bto&cp=1-11-201200%5e9570_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/%20main/hpms_content.jsp?zn=bto&cp=1-11-201200%5e9570_4000_100__
http://www-01.ibm.com/software/awdtools/appscan

84

Discussion

A black box penetration testing is very good and fast, in what situation

will you consider a white box white box over black box penetration
testing.

 4.0 Self-Assessment Exercise(s)

1. Which of the following is Not true about penetration testing?

a. It is being done on the entire system.
b. It is aimed at proving that defects do not exist.

c. It is a deliberate attack on the application.

Answer: B

2. Which of the following vulnerabilities can be looked at by black box
penetration testing tools?

a. Cross-site scripting vulnerabilities

b. Directory traversal attacks
c. All of the above

 Answer: C

 5.0 Conclusion

Certain activities relevant to software security, such as stress testing, are
often carried out at the system level. Penetration testing is also carried

out at the system level, and when a vulnerability is found in this way, it
provides tangible proof that the vulnerability is real. A vulnerability that

can be exploited during system testing will be exploitable by attackers. In
the face of schedule, budget, and staff constraints, these problems are

the most important vulnerabilities to fix. Black box approach requires
running a program, without knowledge of the source code, while providing

malicious inputs to break it. These testing methods can reveal possible

software risks and potential exploits.

Mini Project.
As a software security engineer, base bank of Nigeria approached you

with their planned mobile banking application they are about making
public for customers to use. They want you to come up with an

application testing report considering the following test cases and possible
attack at each stage of the test case. Tools to be used in each case should

listed.

85

 As a software security engineer, base bank of Nigeria approached

you with their planned mobile banking application they are about
making public for customers to use. They want you to come up with

an application testing report considering the following test cases
and possible attack at each stage of the test case. Tools to be used

in each case should listed. (20 Marks)
 Authentication & Authorization

 Information Disclosure
 Session Management

 Input Validation
 Error Handling

 Cryptography
 Application Process Flow Review

 Application Technical Vulnerability Exposures.

Note:

Your recommendation should be the solution to the above listed issues.

 6.0 Summary

In this Unit, you should get the following key points:
o Security Testing demonstrates that software meets specified

security requirements.
o White box testing is effective in detecting programming errors, and

in some cases, amounts to pattern matching, often automated with
a static analyser.

o Both black and white box approaches can reveal possible software
risks and potential exploits.

7.0 References/Further Reading

Allen, J. H.; Barnum, S. J.; Ellison, R. J.; McGraw, G. & Mead, N. R.

(n.d.). Software Security Engineering: A Guide for Project
Managers. Pearson Education ISBN-10:032150917X•ISBN-

13:9780321509178.

Allen, J., Barnum, S., Ellison, R., McGraw, G., & Mead, N. (2008).
Software Security Engineering. Massachusetts: Addison Wesley

Professional.

86

McGraw, G. (2006). Software Security: Building Security In. Boston, MA:

Addison-Wesley,
2006.https://www.oreilly.com/library/view/software-security-

building/0321356705/

Merkow, M., & Raghavan, L. (2010). Secure and Resilient Software
Development. New York: Taylor & Francis

Group.https://doi.org/10.1201/EBK1439826966.

https://www.oreilly.com/library/view/software-security-building/0321356705/
https://www.oreilly.com/library/view/software-security-building/0321356705/
https://doi.org/10.1201/EBK1439826966

