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ABSTRACT
Terrorism and the proliferation of explosives has caused serious damage in public places and 
has become an issue of serious security concern across the globe. Most public places such as
airports,  trains  stations,  government  institutions  and  facilities  are  being  targeted,  thereby
endangering the safety of people’s life and facilities. It is essential to protect these target areas
from explosions and terrorist attacks, without necessarily exposing human security personnel
to such danger. In an attempt to solve the aforementioned problem several approaches such as
animals have been engaged. However, machine learning models have been proven to provide
better  solutions.  The accuracy of  machine learning model  depends on large volume of  data
although some specific type of training has its own setbacks, since obtaining large volume of
data for such training may be cumbersome. The need to develop systems that can easily adapt
with less data and little training knowledge has become inevitable. The focus of this work is to
develop a framework for area-based explosive trace detection using deep transfer learning. The
model used was adapted from deep learning technology trained with large explosive trace data
set that were collected from sensor network. The dataset was converted to a 2D data using serial
data to image generator. The model was developed from a base model known as GasNet and
classified explosive gas within an area base on the concentration of Carbon (C), Hydrogen (H),
Oxygen (O), and Nitrogen (N) gases and was able to classify the gas combinations as either
explosive  or  not.  The  developed  model  called  deep  transfer  learning  for  explosive  trace
detection (DTLETD) was tested and validated using 10% of the explosive trace dataset with
the transfer learning model taking less time of about 92 seconds to train against a training time
of  about  1287  seconds  for  Convolutional  Neural  Network  (CNN) base  model.  The  transfer
learning model converged faster with nearly zero losses for both training and validation. The
model also recorded an accuracy of 99.7%, with an average AUC value of about 0.89. The
outcome has a precession of 96% against 98.2% accuracy and AUC of 1 that was recorded with
the base model. The system was able to adapt with good performance to the new data within
little time using few datasets. This research was able to achieve its objective of developing a
framework for area base explosive trace and was able to improve the accuracy of explosive
trace detection through the development of machine learning based model that utilizes the Deep
Transfer Learning (DTL) approach.
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CHAPTER ONE
INTRODUCTION

1.1. BACKGROUND OF THE STUDY
Attacks on people and sensitive places in the form of terrorism has become a global challenge

that  is  making  organizations  such  as  academic  institutions,  security  agencies  and  the

government to do whatever it  takes to secure people and essential  infrastructures. Recently,

explosive-based  attacks  on  essential  equipment,  students,  personnel  and  government  have

become rampant because explosive form of weapons is easy to manufacture and deploy and

can cause serious destruction (Al-mousawi & Al-mousawi, 2019). This has made development

of various kinds of explosives for destroying innocent people and properties very common. The

area of interest includes learning institutions, airport, government properties and military base

which  can  be  monitored  through  sensor  network.  The  sensor  network  which  comprises

different  types  of  sensors  is  designed  and  deployed  continuously  to  detect  and  identify

explosive traces within specific treat locations in an environment. Trace elements, compounds,

or  chemical  residues  associated  with  explosives,  such  as  TNT  (trinitrotoluene),  RDX

(hexahydro-1,3,5-trinitro-1,3,5-triazine),  known as the Royal Demolition Explosive or PETN

(pentaerythritol  tetranitrate)  can  be  detected.  This  information  collected  in  real  time  by  the

sensor network can be process either by the sensor note or by a remote server using advanced

algorithm for data analysis. This has led to the development of Artificial intelligent (AI) based

system  to  accurately  detect  explosives  before  causing  havoc  in  an  environment.  This  will

eliminate the manual ways of screening by human security system to monitor and secure  target

environment  that  further  expose  human  being  to  potential  attacks  in  volatile  areas

(Wongwattanaporn, 2021). This work focuses on how to effectively use AI based technology

to secure and effectively monitor target environment identified as terrorist potential attack area

using sensor networks system. 

Two  known  methods  that  have  been  deployed  in  explosive  detection  are  bulk  explosive

detection method and trace explosive detection method. Meanwhile, the bulk explosive method

uses  method  such  as  X-rays  and  other  electromagnetic  imaging  method  such  as  the  recent

computer tomography. This method is based on visual, optical and thermal characteristics of

explosive substances that requires advance image processing applications for implementation

of thermo-optical sensors in achieving better result. Contrary to the bulk explosive detection

methods,  the  trace  explosive  detection  approach  is  based  on  chemical  property  traces  of
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explosive materials (Kishore et al., 2019) with most high explosives having the general formula

of Ca Hb  Nd Ok, where the subscript a, b, d, k are numbers of atom associated with each element.

The sample containing oxidizer (O) and the fuel (C, H) of different degree before explosive

will be formed, as in the case of RDX (Cyclotrimethylenetrinitramine, C3H6 N6O6) (Pai, Peng;

Xiaojin, Zhao;Xiaofang, Pan;Wenbin, 2018) (Royal Society of Chemistry, 2011).  Since each

chemical has distinctive characteristics that may alter its environmental composition by altering

some chemical or physical characteristic in the environment. Special sensors are designed to

observe these changes often associated to wireless sensor network (WSN) system applied for

the detection of explosives substances. The main properties considered for explosive detection

procedure includes the chemical characteristic, mechanical nature and physical nature of the

material. The chemical nature of the explosive substance does change the chemical nature of

the  material  in  its  environment,  resulting  in  alteration  in  environmental  composition  of  the

surrounding. Sensors that have either chemical or physical ability to detect these changes are

usually used to respond to these chemical and mechanical changes. It should be noted that the

mechanical  nature  of  substances  are  physically  related  to  the  motion  of  substances  such  as

pressure and speed of  these explosive substances  and are easily detected using mechanical

sensors (Al-mousawi & Al-mousawi, 2019) 

The focus of current technological advancement in the study area is towards early detection of

explosive and the trace detection method which is a faster approach, since at certain pressure

and temperature, solid and liquid substances yield vapours that depends on the quantity of that

vapours to produce a volatility of a substance. A suitable approach of sampling of the gas and

analytical  methods  in  the  presence  of  particular  substance  makes  early  detection  possible

depending on the level of concentration of the substance. The possibility to detect the vapours

of interest is directly determined by how volatile the substance maybe (Wasilewski & Gębicki,

2021). Early detection of explosive substance that could possibly be used is beginning to take

preference  in  detection  approach.  In  this  approach  used  for  early  detection,  substances  that

could be used to manufacture explosives with emphasis mainly on trace of such substances

within the areas that are meant to be explosive free are been explored. It has been established

that  IED  are  types  of  bonds  commonly  used  by  terrorist  and  they  are  made  up  of  certain

chemicals (Wang et al., 2019). 
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1.2. Problem Statement

Terrorism and the proliferation of explosives has caused serious damage in public places and

has become an issue of serious security concern across the world (Obasi et al., 2023), with most

public  places  such  as  airports,  trains  stations,  government  institutions  and  facilities  being

targeted, thereby endangering the safety of people and facilities. How can these target areas be

safe  from  explosions  and  terrorists  attack  without  necessarily  exposing  human  security

personnel  to  such  danger?  In  an  attempt  to  solve  the  aforementioned  problem  several

approaches have been used such as animal Chuen et al., (2020), chemicals ions Adegoke &

Nic Daeid, (2021) Hao et al.,  (2022), mechanical devices, X and gamma rays, neutrons(Al-

mousawi & Al-mousawi, 2019) and electronics nose-based Liu et al., (2019). These methods

have been developed to be intelligent and effective in monitoring wild area and have a short

range of detection. Also, these approaches sometimes result in bulky instrument for detection

that become too noticeable, such visibility could make terrorists to attempt to beat the solutions

provided (Wongwattanaporn, 2021). Since the explosive trace properties cannot be identified

or detected by the human senses, an artificial intelligent based system can be deployed to detect

the presence of explosive trace within an environment with high accurately. Sensor network

are able to sense explosive trace properties and represent same as numeric values that can serve

as input to another system (Al-Mousawi & Al-Hassani, 2018). This is based on the ability of

the sensor to track the chemical and physical characteristics of the traces that these explosives

emit to the surrounding environment. These substances can be traced by Artificial Intelligent

(AI) based wireless sensor network (WSN) that are highly sensitive. The accuracy of the sensor

network is very paramount to have a sensitive robust system. Explosive trace substance data

are scarce as a result of privacy and ethical concern, which will make deep transfer learning

(DTL) approach one of the best techniques to solve this study’s problem statement. 

The DTL model was based on sensor output labeled from a time-series data collected other

source trained for deep neural network (DNN). The DTL was used to learn the general behavior

of time-series data before transferring it to another DNN that is developed for the purposed of

explosive trace detection. Peculiar features of explosive traces are usually extracted through

the normal traditional method of feature extraction which has now been overshadowed by an

automated approach of feature learning such as the DNN (Huang et al.,  2020; Fisher et  al.,

2020). 
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Various types of  sensors network can be utilized in collecting different  gaseous component

together with the physical properties of the environment. In this research, sensor-based data of

explosive trace were collected at various location within an environment, and used to developed

the machine learning model based on DTL. 

In  order  to  realize  the  purpose  of  this  research,  there  was  need  to  introduce  an  Artificial

Intelligent model for securing a learning environment with high selectivity and accuracy with

the capability to adapt speedily with limited explosive trace data (Yaqoob & Younis, 2021), as

a  result  of  restriction  in  explosive  chemical  production  (Omijeh  &  Okemeka  Machiavelli,

2019).   Several  others  such  as  traditional  machine  learning  models  used  to  solve  similar

problem can only detect explosive that have been trained and the deep learning model requires

much time and large volume of dataset for training (Wang et al., 2022). A model called Deep

transfer learning for explosive trace detection (DTLETD) that can use limited explosive data

was  designed  in  this  work  to  accurately  detect  explosive  trace  among  other  chemicals  in  a

learning environment with a reduced training time 

.

1.3. Aim and Objectives

The aim of this study is to develop a model for area-based explosive trace detection using deep

transfer learning. The specific objectives of the study are: 

I. To carry out requirements elicitation of area-based explosive trace detection

II. To  design  a  framework  for  the  detection  of  explosive  traces  using  Deep  Transfer

Learning algorithm

III. To implement a prototype of the framework for area-based explosive trace detection

using deep transfer learning 

IV. To  evaluate  and  benchmark  the  performance  of  the  developed  model

relative to a current state-of-the-art model

1.4. Research Methodology

Table 1.1 shows the mapping of the objectives to the research methodology with corresponding

question  to  be  addressed.  The  requirement  for  explosive  detection  was  established  through

literature and the model for explosive trace detection using deep transfer learning was designed

using  appropriate  design  tool.  The  proposed  model  was  implemented  using  python  and  its

Libraries. The last objective to evaluate the deep transfer learning model was achieved using

confusion matrix. 
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Table 1.1: The objectives, research methodology, and research questions mapping.

SN Research objectives Research 

Methodology

Research Questions

I To  Carryout  requirements

elicitation  of  area-based

explosive trace detection

-Literature review 

-Primary  and

secondary sources of

data.

What  are  the  requirements  of  area-

based explosive trace detection?

II To design a framework for the

detection  of  explosive  traces

using Deep Transfer Learning

algorithm

-Use  of  schematic

diagram,  Visio,

draw.io

Unified  Modelling

Language (UML)

How  can  a  framework  for  the

detection  of  explosive  traces  using

Deep  Transfer  Learning  be

designed?

III To  implement  the  framework

for area-based explosive trace

detection  using  deep  transfer

learning 

-Use of Python

-

Anaconda.Navigator,

Jupiter Notebook.

-Support  Vector

Machine.

-Libraries:  Pandas,

Numpy,  Sklearn,

matplotlib,  imblearn,

etc.

How  can  a  framework  for  the

detection  of  explosive  traces  using

Deep  Transfer  Learning  be

implemented?

IV To  test  and  evaluate  the

performance  of  the  transfer

learning  model and

benchmark  with  other  state-

of-the-art  model  like  SVM,

KNN,  CNN,  ImageNet  and

AlexNet

-Standard  machine

learning  evaluation

techniques  (Recall,

Precision,  F1-Score,

Accuracy), 

How  can  machine  learning  models

of  Deep  transfer  learning  be

evaluated  to  determine  the  level  of

accuracy?
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1.5. Scope of the Study

This  research  proposes  to  detect  explosives  within  an  area  by  using  the  common  trace  of

explosive material. A deep learning model was be developed to detect the presence of explosive

trace from the limited available data collected from sensor array network. This model expected
to be accurate, fast in detection and at the same time light weighted to be able to run on edge

device. The system was not considered for the bulk type of explosives, however the model can

be train to work on bulk-based sensors. The system will be validated using dataset generated

from a simulated setup to determine the performance of the developed model. The work will

not consider sensor and wireless sensor placement. The developed model is not expected to be

used on edge devices, since it’s outside the scope of this work.

1.6.Significance of the Study

Explosive-based terrorism has become a known means of carrying out attacks on public places,

such as learning environment, train station, airports and sensitive facilities which has caused a

lot of damages to lives and properties. The reason for this rise in explosive attacks is because

explosive-based weapons can easily be manufactured, deployed and can have multiple effects.

The  need  for  protection  of  public  environment  and  lives  has  given  rise  to  environmental

monitoring system that could quickly detect traces of explosives before causing havoc to lives.

The selectivity and accuracy of sensors-based system is of paramount importance to have a

system that is reliable in the presence of noise. This work tries to improve the selectivity and

accuracy  of  explosive  trace  detection  through  the  development  of  machine  learning  based

model that utilizes the DTL approach. The model can work in a new environment with easy

adaptation with limited dataset.

1.7.Definition of terms

 Conventional machine learning: this can be any machine learning approach other than

deep  learning  that  passes  through  the  process  of  separate  feature  extraction  process

through which the machine learns

 Deep  Learning  (DL):  it  is  a  branch  of  machine  learning  model  that  uses

backpropagation for pattern recognition without manual feature extraction.

 Edge devices: These are devices that serves as entry point into service provider core

networks, they connect local area network to an external network for data accessibility

everywhere.
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 Explosive trace (ET): these are microscopic particles from explosive substances that

can change the physical property of an environment.

 Sensor:  device  that  response  to  variable  input  within  the  environment  and  give

corresponding noticeable response that can be read by machines or human beings.

 Transfer Learning (ML):  machine learning approach that uses the knowledge gained

from a particular task to improve the performance of another related task

1.8.Organization of Thesis

This thesis has different chapters with each chapter contributing to the overall objectives of the

work. It has the data acquisition part and the software development part to achieve the aim.

Chapter  one  seeks  to  introduce  the  overall  work,  the  aim  and  objectives,  and  scope  of  the

research, while Chapter Two provides the detailed review of relevant literatures. Chapter Three

covers the research framework, methodology, data used, the machine learning approach and

the experimental setup. The experimental results and discussion are covered in Chapter Four.

The  conclusion  is  explained  in  Chapter  Five  with  essential  recommendations  and  possible

further research.
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CHAPTER TWO
 LITERATURE REVIEW 

2.1 Theoretical Framework

This chapter describes the basic concepts and theories related to this current research. Concepts

discussed  include  Improvised  Explosive  Device  (IED),  explosive  trace  detection,  wireless

sensor  networks,  explosive  trace  detection,  and  machine  learning  approaches  for  explosive

detection with focus on deep transfer network.

2.2 Improvised Explosive Device (IED) 

Bombs  that  are  manufactured  at  home  or  roadside  using  certain  chemicals  are  IED  whose

manufacturing  process  does  not  follow  the  normal  military  conventional  way  of  producing

bombs.  IEDs  could  be  used  by  insurgents  and  terrorists  for  suicide  mission  and  mass

destructions of targeted areas. Since they are improvised, they can exist in divers’ forms that

could  be  like  small  pipe  bomb  or  a  form  of  sophisticated  device  that  could  cause  massive

destruction to lives and properties IEDs are usual hide in vehicle or carried by human beings,

concealed in package;  or  place by the roadside (Gill  et  al.,  2011).   It  contains an explosive

substance that could be combine with other materials that could blast with the ability rippled

destructive effect. These substances can be dynamite, gunpowder, and nitroglycerin, blasting

caps,  detonating  fuses,  black  powder,  and  gunpowder.  Some  other  substances  could  be

combustible but not regarded as explosive because they do not emit ionizing, gasoline, oils,

etc. are in that categories (Sapir & Giangrande, 2009). Some explosive chemical and compound

are commonly available and can easily be accessible within most countries, civilian therefore

easily manufacture IED illegally to cause civic unrest in the society(Wilkinson et al., 2007).

IED can be used in any place, it can be dropped by the road side, brought into military barrack

and area localized target. 

Principally, IEDs is made up of an initiator, a detonator, an explosive charge, and a casing or

collection of projectiles (such as ball  bearings or nails) that produces lethal fragments upon

detonation. In reality, it consists diver kinds of substance such as artillery or mortar rounds,

aerial bombs, and some varieties of fertilizers, compound like TNT. It could as well contain

radiological,  chemical,  or  biological  part  to  increase  their  lethal  and  psychological  effect
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(Mansoor, 2018). The effect of the IED mostly depend on the explosive used, those target at

structure will have higher explosive to generate much more effect.

Explosives  bombs  can  basically  be  classified  into  three  main  categories  according  to  (AL-

Mousawi & K. AL-Hassani, 2018). The first category is the military bomb which are said to be

of  a  high  standard  in  preparation  and  so  need  special  intervention  from  governments.  The

manufacturing procedure is very complex and it requires high cost because of special devices

involved that makes these types of bombs not readily available. The commercial or industrial

bombs are the types of bombs that are used in the industry for process such as to detect metals

and destruction of hard metallic substances. These categories are always developed in scientific

laboratories. The third category is the improvised explosive devices that are mostly used by

terrorists  for  unlawful  attacks this  is  because it  is  easy to  produce since the material  for  its

production are readily available and as no special equipment is also required to manufacture it.

This form of explosive can be of two categories with  the first been an IEDs and the second

category is the mobile type that like car bombs (AL-Mousawi & AL-Hassani, 2018). 

Most  commonly  used  approaches  in  explosive  trace  detection  approach  are  sensor-based

detection, Gas Chromatography (GC), Mass Spectrometry (MS), and Mobility Spectrometry

(MS).  The  vapor  and  particulate  emission  are  what  the  trace  explosion  detection  approach

utilizes for its detection. Different vapours are emitted from explosive particles such are used

for research in explosive detection obtained from RDX, TNT and other explosive materials that

include  nitro  aromatics,  nitroaminies,  nitroesters,  acid  salt,  ammonium picrate,  and  organic

peroxides. RDX is associated with the vapour nitroamines while the TNT is associated with

nitro  aromatics.  Nitro  amines  for  vapour  trace  explosive  detection  are  associated  with  the

explosives  such  as  RDX:  1,  3,  5-triazacyclohexane,  HMX:  Octahydro-  1,3,5,7  –tetranitro-

1,3,5,7  –tetrazocine  and  NQ:  Nitro  guanidine.  Explosives  associated  with  nitroaromatics

include TNT: 2,4,6- Trinitrotoluene, TNB: 1,3,5- Trinitrobenzene, DNB: 1,3- Dinitrobenzene,

2, 4 DNT: 2,4 – Dinitrotoluene, 2, 6 –DNT: 2, 6 –dinitrotoluene, Tetryl: Methyl-2, 4, 6-trinitro-

phenylnitramine,  2AmDNT:  2-amino-4,  6  –  dinitrotoluene,  4AmDNT:  4-amino-2,  6  –

dinitrotoluene, NT: Nitrotoluene (3 isomers), NB: Nitrobenzene and EGDN: Ethylene glycol

dinitrate. Ammonium nitrate and urea nitrate are related to acid salt. Nitroesters are associated

with NG: Nitroglycerin (glycerol trinitrate) and PETN: Pentaerythritol tetra nitrate. Picric acid

relted  exlsoive  materials  are  AP/PA:  Ammonium  2,  4,  6-trinitrophenoxide/2,  4,  6-
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trinitrophenol  while  organic  peroxides  are  TATP:  Triacetone  tripede  and  HMTD:

Hexamethylene triperoxide diamine.

Most  of  the  component  used  in  manufacturing  of  IED  products  can  be  found  with  the

description is shown in table 2.1. Most of these explosive components for the manufacture of

IED can easily be found in medical stores and that makes the production easy.

Table 2.1: Common Explosive Component (AL-Mousawi & AL-Hassani, 2018).

SN EXPLOSIVE 
SUBSTANCE

NATURE/WHERE TO BE FOUND EXPLOSIVE
IDENTITY

1. Hydrogen -peroxide Can be found at chemist or pharmaceutical shop IED

2. Acetoness Can  be  found  at  polish  remover,  also  as  part

plastic substance 

IED

3. Mercury Can be found in dental stores in a form of  toxic

substance.

IED

4. Ethyl- alcohol Can be called ethanol as well and can be found

in medical shops.

IED/ military 

5. Methyl alcohol Very flammable substance and can be used 

as antifreeze, can be called methanol and used

as wood alcohol

IED

6. Hexamine This chemical substance removed from the

white cool, white cool available on

big stores.

IED

7. Sodium acid Available in medical store IED

8. Sodium nitrate Known as Soda Niter, can be found at the

agriculture stores

IED

9. Ammonium nitrate IED Available at agriculture stores IED

10. Potassium nitrate Also  known as  nitrate,  available  at  agriculture

stores

IED
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11. Lead nitrate Compound can be found at agriculture shops IED

12. Barium nitrate Chemical compound can be found at

agriculture stores

IED/ military

13. Urea Known as carbamide, available at the

agriculture shops

IED

14. Sodium carbonate It is used to make papers and glasses, known

as sal soda washing soda, and soda ash.

Available at supermarkets

IED

15. Sodium bicarbonate A white soluble compound used in baking

powder, known as baking soda, soda

bicarbonate. Available at supermarkets

IED

16. Ammonium hydroxide Sometimes called ammonium water, can be

found in supermarkets

IED / Military

17. Potassium chlorate Known as bleaching agent, chemical compound

can be found at the supermarkets

IED 

18. Sulphur acid Used as a vehicle’s battery filler, known as

battery acid

IED / Military

19. Nitric acid Available at the gold shops, known as aqua

fortis

IED 

20. Aluminium powder Available in painting store IED 

21. Citric acid A weak water-soluble acid. Can be found at the

supermarkets

IED 

22. Acetic acid The colourless pungent liquid widely used in

the plastic manufacturing can be found at

the supermarket.

IED 

23. Potassium permanganate Used as a water cleaner, used in oxidising and

bleaching agent, known as permanganate of

potash,

IED 

24. Nitrobenzene Oily high toxic water, used for screen cleaning,

used to manufacturing aniline

IED 

25. Glycerin Available in the medical store IED / Military

26. Petroleum Jelly A semisolid mixture of hydrocarbons obtained IED
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These explosive chemicals can either be pure individual/single explosive or mixture of two or

more chemical to produce the explosive. The single explosives can also be referred to every

explosive compound that its unimolecular decomposition reaction may produce an explosion.

Thy are pure compound that are consist of various atoms chemically bonded which can be of

two  categories  of  compound  of   either  inorganic  or  organic  as  a  result  of  the  chemical

compound (Zapata & García-Ruiz, 2021). Figure 2.1 show a comprehensive classification of

explosive chemical. The pure individual explosive which is divided into organic and inorganic

contain  peroxide,  nitro,  organic  azides,  Halogen  amino  compound  and  other  organic

explosives, while the inorganics explosive contains the non-metal and metal explosives. The

most  common  chemical  found  in  this  classification  are  TNT  class,  TATP  class  or  the

nitroguanidine (with one atom of carbon) while the TNT has seven atom of carbon and TATP

has nine carbon atom. Others are the peroxides, Nitro explosive, Ammonium nitrate (NH4NO3),

Chlorate-based  explosives  etc.(Zapata  &  García-Ruiz,  2021).  Knowing  these  chemical

constituents can the narrow the detections of the explosive trace to the response base on the

sensor response to these chemicals. Majority of high explosives substance are described by this

formula Ca Hb Nc Od, it contains both oxidiser (O) and the fuel (C, H). Some of this substance

can also have low sensitivity and that will demand high sensitivity sensor to be able to detect

explosive trace using such  (Jimenez & Navas, 2007). Most common explosive are nitrate base

but the hydrogen peroxide has become popular because of terrorist. The approach appropriate

for direct explosive traces detection in the form vapour that can detect explosive concentrate at

below 1 ng/L.(Jimenez & Navas, 2007)

from petroleum, known in the market as

(Vaseline), can be found in medical shops

27. Charcoal This chemical element can be found at the

leftover of wood burning

IED

28. Hydrazine hydrate Can be found on    sponges IED
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•

Figure 2. 1: Classification of Explosive Chemicals (Zapata H & García-Ruiz, 2021)

2.3 Explosive Trace Detection Methods

Generally,  explosive  detection  approach  can  be  categories  in  two  ways,  the  trace  detection

method  which  focuses  on  vapor/particles  that  could  lead  to  actual  explosive  and  the  bulk

detection method which find actual explosive. Figure 2.2 shows the two methods of explosive
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detection which are the bulk detection and the trace detection method. While our interest id on

the trace detection approach, we shall give brief insight into the bulk detection approach.

Figure 2.2: Explosive Detection Methods(Zafar et al., 2017)

2.3.1 Bulk detection method

The bulk explosive detection approach tends to detect explosives that are obvious to human

that is big in size but sometimes maybe concealed, this approach tries to use high penetrating

capacity system to clearly detect explosive presence. This methods of detection can either be

imaging-based methods or nuclear-based methods(Kishore Kumar & Murali, 2016). The bulk

detection approach apart from image target could also targets high nitrogen, oxygen content

and high bulk density of the explosive substance (Marshall & Oxley, 2009).

Imaging approach such as various X-ray methods like single- energy X-ray, dual-energy X-

ray, and computed tomography approach are employed for the bulk detection of the explosive.

Most bombs have unique spatial features and specially shaped metal components like wires,

detonators,  and  batteries.  These  components  allow  some  level  of  discrimination  from  the

background  due  to  explosive  dielectric  constants  for  X-ray  and  microwave  imaging

approaches. The reflection, absorption, and scattering for various explosives in a set of spectral

bands can be classified, and this information can be used as a data base for image analysis. 

There are several imaging techniques that utilizes radiation with wavelengths from the range

of radio waves to gamma rays(Kishore Kumar & Murali, 2016). Some method found in these

techniques involve the use of X-Rays, Infrared, Terahertz and Microwaves. Another important

method is the nuclear based approach that includes the use of thermal neutron analysis, pulsed

fast neutron analysis, nuclear quadrupole resonance. Each method has its own advantages. In

these detection methods screening of personnel in sensitive places, screening cars and items in

the ship. Hidden bombs are searched to ensure protection of lives and infrastructure. One of
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main  concern  in  deploying  these  methods  is  health  issue(The  National  Research  Council,

2004).

2.3.3 The Trace Detection methods
Explosives can also be detected in a form of trace associated with the explosive. In this methods

vapour/chemical emitted from explosive or explosive particles within the surrounding is used

to detect the presence of explosive (Kumar et al., 2019). These explosives could exist either as

a  vapour  or  particulate  form.  If  it  appears  as  a  vapour,  it  is  found  in  the  air  but  if  it  is  in

particulate is in a form of the residue of explosive material that adheres to surfaces of the object

premise (Kishore Kumar & Murali, 2016). 

In the trace detection approach, efforts are being made to track the chemical properties of the

explosive substances and also its physical properties within the surrounding environment. Any

of these chemicals has the ability to effect changes within the surroundings and this will greatly

affect the properties of the environment (Al-mousawi & Al-hassani, 2017). The basic property

used in explosive trace detection system is the chemical signatures of the explosive that easily

alter  many  chemical  constituents  within  the  vicinity  of  its  presence,  this  sudden  in  the

surrounding of interest can be detected using chemical sensors like electronics nose. The other

properties of consideration is the mechanical properties and physical properties (Al-mousawi

& Al-hassani, 2017). The physical and mechanical properties are physical and all are related to

how the explosive moves, the speed of movement and pressure, these properties are handled

by mechanical sensor. 

The vapour component is referred to as the gas molecules released from either solid or liquid

explosive  material.  For  proper  detection  of  this  trace  some  other  information  that  are  very

important are the explosive concentration in the air known as vapour pressure, the frequency

of explosives material in the environment, air flow in the environment , etc. The particulate are

the tiny explosive substance that are like a form of leftover on the surface of object or human

being  that  have  made  contact  with  the  explosive  through  any  means.  The  vapour  sampling

requires no contact while the particulate sampling requires direct contact to remove explosives

material particles from a contaminated surface. This different form of explosive trace makes

the  detection  system  to  have  advantages  and  disadvantages  in  its  approach  (Thiesan  et  al.,

2005). To overcome the setback, one of the best approaches is to consider the specific chemical
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from  the  target  compound  in  the  material  that  is  used  to  manufacture  explosives  rather

generalized property.  This help in reducing the probability of  false alarm compared to bulk

detection methods which focus on the typical property (Marshall & Oxley, 2009). 

The  three  main  categories  of  explosives  are  the  Nitro  aromatic  explosives,  Chlorate  based

explosives and the Peroxide based explosives. The traditional form of explosive detection has

not been so effective because these techniques of detection of are large and terrorists can easily

notice them and try to beat them(Zafar et al., 2017). Hence the need to use detection system

that are not visible to human eyes and are economical to be set up in public places. Explosive

detection evolution shows some natural beings like animal are efficient sensors for detecting

explosive  traces  in  an  environment.  Like  the  dogs  could  be  trained  on  particular  explosive

material so well that anytime they smell the fragrancen of such material in the environment

they can alarm their handler for the presence of explosive material. The limitation is that when

dogs are tired of smelling they become ineffective. Honey bees are said to be most effective

sensors  used  like  the  trained  dogs  but  very  difficult  to  harness  and  are  not  commercially

available. Also considering the fact that some methods such as X-ray are visible and take more

time to detect explosive (Zafar et al., 2017), the Wireless Sensor Network detection method

has become a better method. 

Automated means of detecting explosives is unavoidable in the present reality because of how

frequent  terrorist  have  started  attacking  and  causing  alarming  destruction  in  sensitive’s

environment so it is necessary to have a workable intelligent system that could provide relevant

information  for  needful  actions  against  explosive  based  attacks  (Kishore  Kumar  &  Murali,

2016),.  At  a  certain  temperature,  solids  and  liquids  release  vapour  to  the  environment,  the

amount of vapour released can be used to determine the nature of that substance. The sample

of this vapour are is collected without making contact with the surface of the material, sampling

and analysis are air-borne. Since some explosive substance do not evaporate easily as a result

material that depend on the vapour pressure hence, sampling strategies are very important due

to the usually small amount of vapor- phase explosives material emitted from solid explosives

material. 

2.4 Machine Learning Approach in Explosive Trace Detection (ETD)

Machine learning (ML) is subset of Artificial Intelligent (AI) makes machine to receive data,

analysis them and make decision without or with minimal human intervention, it’s a trainable
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assistant system adapting to individual user’s objectives, the system can be trained to achieve

what the user intended it to achieve (Díaz-Ramírez, 2021). Machine can also be trained to scan

environment.  As  research  in  ML  keeps  progressing,  we  have  seen  recent  development  in

intelligent systems that make systems to behave like human with capacity that enables systems

to  do  the  work  of  human  beings  (Shrestha  et  al.,  2021).  This  makes  ML  learning  finds

application is several fields like security. The development of a capacity-based systems that

can solve advanced problem is generally referred to as artificial intelligence (AI), these systems

used  analytical  approach  algorithms  to  predictions,  generate  rules,  give  answers,

recommendations,  or  similar  outcomes  in  solving  problems.  This  relieves  humans  of  their

burden  and  the  risk  of  doing  certain  task  by  transferring  their  knowledge  into  a  machine-

accessible form and allow the development of an intelligent systems that will work efficiently

(Díaz-Ramírez, 2021).

The fundamental  concept  of  AI shall  briefly  be discussed for  clarity  and since Ai is  not  an

entity,  its  relationships  and  differences  with  ML algorithm,  Artificial  Neural  Networks  and

Deep  neural  networks  shall  be  expressed.  The  Venn  diagram  in  figure  2.3  shows  the

relationship between them. Generally, AI is the compound word that represent all technique

that makes computers to learn how to be intelligent as human beings in reproducing whatever

it learnt and making decision in solving complex tasks with minimal human intervention.
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Figure 2.3: Relationship between AI, ML and DL (Aljojo et al., 2022)

AI research in the first stage is interested in hard-coded expressions that follow a set of rules

that  a  computer  can  understand  and  carry  out  a  logical  decision.  This  is  referred  to  as

knowledge-based  system  and  this  is  found  to  have  limitations  of  not  being  able  to  handle

complex task that ML approach has to solve (Díaz-Ramírez, 2021). ML is referred to computer

program whose performance keeps improving  as it  keeps learning through experience with

respect to assignment and certain performance measures (Jordan & Mitchell, 2015). It target

how to automate assignment by using analytical approach to build performance cognitive tasks

to detected object.  It  does that  with the help of  algorithms that  keep learning from the task

training data that makes the machine to have in-depth understanding of complex patterns even

when fresh programming is not involve. When the system learns from pools of data that relate

to classification, regression, and clustering, ML seems to be very reliable and perform that task

with repeatable decision. ML model have gained success in several application area like image

recognition,  natural  occurrence  predations,  natural  language  processing  (NLP),  etc.  (Díaz-

Ramírez,  2021).  Generally,  ML  is  divided  into  three  types  which  are;  supervised  learning,

unsupervised learning, and reinforcement learning. The supervised learning is majorly used in

several applications that electronic markets.

Machine learning algorithm has some limitations such as inability to handle large volume of

data (big data). Its approach focuses mainly on hand encrypted features which demand that the
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system carefully learn those feature and extract them before taking decision based on these and

these will take a lot of time. This model also has another limitation known as vanishing gradient

and over  fitting  that  tends  to  reduce the  performances  of  the  training models  (Aljojo  et  al.,

2022). These limitations are what leads to the emerging of Deep learning (DL), DL can handle

complex data efficiently without experiencing the drawback of ML and this has made DL more

acceptable than the traditional ML algorithm.

2.4.1 Traditional Machine Learning Concept

A group of methods and algorithms known as "traditional machine learning" were created prior

to the development of deep learning. These algorithms are frequently used for many machine

learning  tasks,  such  as  classification,  regression,  clustering,  dimensionality  reduction,  and

more. They are primarily based on mathematical optimization and statistical concepts. These

are  some  of  the  fundamental  ideas  and  techniques  of  conventional  machine  learning.

Experience generates the matching algorithm model, and machine automated learning is truly

the  process  that  generates  the  algorithm model.  Machine  learning  researches  these  learning

algorithms  (Zheng,  2023).  The  process  of  creating  new  things,  reasoning  with  insufficient

knowledge, digesting current big data trends, and replicating human thought processes are all

included in the production of learning algorithms. Currently, supervised learning algorithms,

unsupervised  learning  algorithms,  and  semisupervised  learning  algorithms  comprise  the

majority of classical machine learning algorithms. Regression and classification algorithms are

the  two  main  categories  of  supervised  learning  algorithms.  Using  continuous  functions  to

match input and output variables is known as regression. The matching of discrete categories

and  input  variables  is  known  as  classification.  Unsupervised  learning  implies  that  the  final

product is unknown beforehand. For instance, clustering allows us to extract a unique structure

from the data. In unsupervised learning, there is either no label or just one label (Sarker, 2021)

A  learning  strategy  called  semisupervised  learning  combines  supervised  and  unsupervised

learning. There are two types of data in machine learning: marked data and unmarked data.

Learning may be made more accurate and efficient by using semisupervised learning. 

A binary classification algorithm that supports both linear and nonlinear classification is called

support vector machine (SVM). It is now commonly used in regression and classification and

supports  multivariate  classification  after  evolution.  It  effectively  resolves  nonlinear,  small

sample, and high-dimensional issues and resolves the issues raised by conventional approaches.

Experiments demonstrate that this approach excels in various domains and has grown to be an

essential component of the machine learning community.
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SVM is essentially a decision-making tool  that  classifies sample data;  its  true purpose is  to

solve. The classification problem is converted into a quadratic programming problem by first

determining the maximum classification interval and then identifying the ideal classification

hyperplane.  The element  problem is  converted into a  dual  problem and subsequently into a

convex quadratic programming problem by applying the Lagrangian optimization technique.

In order to solve the optimization problem in this procedure, relaxation variables must be added

if  the  sample  points  are  linear  and  indivisible.  The  kernel  function  is  utilized  to  solve  the

problem if the sample is nonlinear (Sarker, 2021).

With its  strong classification performance,  support  vector  machines (SVMs) have taken the
machine learning world by storm since their invention. 

Support vector machines are effective in high-dimensional spaces and can behave differently

based  on  different  mathematical  functions.  In  high-  or  infinite-dimensional  space,  they

construct  a  hyper-plane  or  set  of  hyper-planes.  Intuitively,  the  hyper-plane,  which  has  the

greatest distance from the nearest training data points in any class, achieves a strong separation

since,  in  general,  the  greater  the  margin,  the  lower  the  classifier's  generalization  error:(1)

Gaussian radial basis kernel function; (2) Polynomial kernel function; and (3) Linear kernel

function(4) The kernel function sigmoid

Another traditional machine learning approach is the K-nearest neighbors (KNN), it is referred

to  as  a  "lazy  learning"  method.  It  said  to  be  "instance-based  learning"  or  non-generalizing

learning  algorithm.  It  retains  all  instances  corresponding  to  training  data  in  n-dimensional

space,  rather  than  concentrating  on  building  a  generic  internal  model.  KNN  use  similarity

metrics, such as the Euclidean distance function, to classify new data points using existing data

(Barupal & Fiehn, 2019). The k closest neighbors of each point vote with a simple majority to

determine the classification. Accuracy is dependent on the quality of the data, but it is rather

resilient to noisy training data. The most significant problem with KNN is determining the ideal

number of neighbors to take into account. KNN is useful for regression as well as classification.

There  are  other  traditional  machine  learning  algorithm  that  can  used  for  detection  and

classification of explosive trace data with appropriate parameter selection.



1-21

2.4.2 Deep Learning Approach in Explosive Trace Detection

The  Deep  Learning  algorithms  will  record  better  perform  whenever  larger  dataset  is  to  be

considered because it eradicates the challenge of vanishing gradient and overfitting which is a

serious problem with traditional ML. It can bring out hidden information that are very relevance

in large volume of dataset(Alom et al., 2019). Neural Networks (NN) is associated to ML, and

that is where DL evolved from and since its emergence it has proved to be outstanding in almost

all  application  domain.  Deep  Learning  utilizes  deep  architectures  or  hierarchical  learning

approach, it is a subset of ML that became so pronounced from 2006 onward. Learning is a

process that tries to estimate the system parameters so that the learned algorithm could carry

out  assigned  task.  The  Artificial  Neural  Networks  (ANN)  uses  the  weight  matrices  as  the

parameter and it is made up of  many layers in between the input and output layer that made it

possible for non-linear data processing units with hierarchical architectures to be available for

exploitation of feature learning and pattern classification (Schmidhuber, 2014). 

DL has become so popular because of various successes it  has recorded in complex data in

object recognition detection and segmentation, image classification and localization, face and

speech recognition and so on. In addition to these, DL is better intense of feature engineering,

and feature extraction (Díaz-Ramírez, 2021). These advantages make DL the best model for

explosive trace detection. Deep learning has become a strong analyzing model when dealing

with high volumes of information that is generated through sensor network especially in an

environment polluted with high level of noise and complex situation that make the conventional

machine learning techniques difficult to be apply (Li et al., 2018). This problem can be easily

solve  by  deploying  Deep  learning  approach   is  seen  as  the  best  appropriate  method  since

explosive traces has to be precisely detected in a complex and noise environment. The deep

learning model  with many layers  can be scaled down to find sufficient  features that  can be

applied to edge device. 

2.4.3 Deep transfer learning for Explosive Trace Detection

DL tries to focus on reduction of training time of data especially when considering the cost

implication of nonlinear data.  Extensive training datasets is  hard to retrieve in certain cases

leads to the introduction of deep transfer learning (DTL). With DTL a pre-trained model for a

certain assignment can be applied on a simple edge device like a cellphone that is limited in

processing power and need reduced training time. Its developments has led to an intuitive and
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high level of AI based systems because DTL sees learning as a continuous process (Iman &

Arabnia, 2022).

In DTL, the model is first trained on one task, then the knowledge obtained from that model is

used on another task or related task to reduce learning cost. A large amount of label data is

necessary  for  accuracy  in  DL model  and  most  time  to  get  this  dataset  is  very  difficult  and

expensive, with the DTL higher accuracy can be gotten from small amount of trained dataset.

There is also the need of reducing the processing power in ML models for it to work effective

on edge devices like handsets, hence transfer learning is necessary.

To define a transfer learning using mathematical notation, let define what domain and task are.

Say  D is  a  domain  that  has  two  parts,  made  up  of  feature  space  X while  P(X)  is  marginal

distribution. The Domain, D =  {X , P(X)}.  Where X is a symbol that shows the instance set

and is

 X =  {x|xi ∈  X , i =  1 ,...,n}. (2.1)

A task denoted as T with decision function f is made up of a space y, that is expressed as T =

{Y, f}. f which is the decision function is to be learnt and generated from the dataset.

Certain  machine  learning  algorithm  usually  gives  the  predicted  conditional  distributions  of

instances. This will yield, 

f Xj = P yk|Xj |yk ∈ y,k = 1 ,…, y . (2.2)

In essence, a domain is viewed and records the instances with or without the label data. For

instance, say Ds  is source domain that corresponds to source task,  Ts   that is always viewed

through the instance-label pairs, that results in, Ds =  {(x, y)|Xi ∈   Xs, yi ∈  ys, i =  1,...,ns} ;

the  target  comprises  of  instances  that  is  not  labelled  either  any  of  few  number  of  labeled

instances.

The  TL,   when  assigned  certain  observations  that  corresponds  to  ms ∈ N+   of  the  source

domains  and  tasks,  that  implies  {(DSi.   TSi)|i = 1 ,…,ms},  and  some  observations relating to

mT ∈ N+  target domains and tasks {(DTj.  Ttj)|j = 1 ,…,mT}, what transfer learning does is that

the  knowledge  gained  from  the  source  domains  is  been  used  to  improve  learned  decision

functions  fTj  (j = 1 ,….,mT)Si.   TSi)  on  the  target  domains.  If  ms = 1 ,  we will have a single-
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source transfer learning scenario else it referred to as multisource transfer learning. mT  is the

total  sum of the TL assignment.  Some research tend to make  mT  ≥ 2.  The current transfer

learning approach focuses more on scenarios where  ms = mT = 1  (Zhuang et al., 2020)

DTL is not exactly same as semi-supervised learning, Multiview learning, i.e multitask leaning

and another feature of the semi supervised learning is that the same dataset forms data source

and target data. In this case the target data will not have labels, but Multiview learning approach

differs because more than one datasets are utilized so as output of the task could be improved

by the result obtained from another task. Like in video dataset, image data and audio data are

separated. In the multitask transfer learning task are interconnected for the purpose of boosting

each  other  while  the  transfer  of  knowledge  happens  the  same  time  between  all  the  tasks

involved (Iman & Arabnia, 2022).

 When we are considering the DTL, the interest is the target domain, and the knowledge needed

for the target data is has been gotten from source data so, the is no need of running both the

source and target data concurrently to obtain the necessary result (Iman & Arabnia, 2022). In

the  classification  of  DTLs  groups  based  on  label-setting  three  classes  are  considered;  the

transductive, inductive, and unsupervised approach. The transductive focuses on labeling the

source data alone, inductive labels both source and the data of interest (target data) but in some

cases none of the data is labeled it becomes unsupervised deep transfer (Zhuang et al., 2020).

Another way to look at DTL approach is based on the aspect is been applied and this can be

categorized  into  four  which  are:  the  instance-based,  the  feature  based,  parameter-based  or

network-based, and relational-based or adversarial-based. Instance-based transfer learning uses

selected  parts  of  instances  sometimes  all  the  instances  in  source  data  and  apply  different

weighting approach on the target  data to obtain result.  In the case of Feature-based method

instances or what is called features are mapped from both source and target data to form another

homogenous dataset for result. The feature-based could be based on asymmetric approach of

transfer learning  or symmetric mode of transfer learning. While the Asymmetric approaches

transform the source features to match the target ones, the symmetric approaches attempt to

find a common latent feature space and then transform both the source and the target features

into a new feature representation (Iman & Arabnia, 2022).
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2.4.4 Edge-Computing Based Explosive Trace Detection

In  edge-computing  based  system  can  be  deployed  to  monitor  the  environment  of  interest

against  explosive  trace,  sensor  network  collect  the  ET  information  live  and  tries  to

communicate  the  information  to  edge  computing  server  that  will  carry  out  expected  data

operation and analysis. This will result in reducing system energy consumption and network

bottleneck (Fang et al., 2020). Edge computing is a modern technology that tends to minimizing

the  time the  application will  complete  and the  energy consumption of  data  transmission by

distributing cloud resources closer to where data generation (Fang & Ma, 2021). The ‘Edge’

means to make computing device closer to the source of data. It is the distributed framework

where  data  is  processed  as  close  to  the  originating  data  source  possible  and  this  tries  to

eliminate any form of delay in processing the output results. The processing of the data, storage

and the networking get closer to the user.

Edge computing finds real application in WSN and this can be used to monitor the presence of

ET in the environment. All the heavy ML model can be deployed in the cloud and the trained

model can be deployed on the edge for real time prediction.

2.5 Sensor Network for Explosive Trace Monitoring

Sensor network compose of several sensors interconnected to monitor physical condition of an

environment  in  real  time,  such  condition  could  be  temperature,  pressure,  pollutant  sound,

vibration or motion and explosive to produce sensory data that can be interpreted. The sensors

can form an array or sometimes are connected through a wireless means called wireless Sensor

network (WSN). The information gathered by the WSN is usually passed to the sink or base

station which serves as an interface where human gets information from the network, which

maybe through direct connection, satellite, internet, edge device or any type of wireless link

(Fong, 2017).

A typical WSN contains several sensor nodes that can communicate with one another using

radio signals.  The sensor (radio) node consists of microcontroller,  radio transceivers, power

modules and external memory. The node can both serve as data originator and also data router.

it receives what is sensed from the sensor and send it to the access point (sink node) (Suganya

et al., 2019). The sink communicates with end user directly or through any wireless means. The

sensors  are  used to capture the variable  within the environment  but  convert  this  variable  to

electrical signal. The access point sent the data through the internet to the server where we have
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the evaluation software. The challenge of deploying entity nodes in WSN are lack of resource

associated  with  it,  there  is  limitation  of  speed  of  response,  storage  space,  and  channel

bandwidth   and  these  are  areas  researchers  have  tried  to  address  lately.  When  Global

Positioning System (GPS) and certain model are used on the WSN location and positioning

information  can  be  obtained   (Matin  & Islam,  2018).  Figure  2.4  show a  typical  WSN with

multiple sensors, sink and user. Multiple user and sink could be in cooperated depending on

the coverage area.

Figure 2.4: Typical WSN architecture (Matin & Islam, 2018)

When detection area to be considered is in a large public place, WSN must be deployed to cater

such  environment  for  adequate  monitoring.  With  the  help  of  WSN,  a  localized  area  can  be

monitored  live  using  AI  base  system,  data  are  collected,  aggregated  and  forwarded  to  the

server.  When the defined characteristic is analyzed, prediction of explosive presence will be

possible. Array of sensors forming WSN will be adequate to monitor the environment against

the presence of explosive traces (Simi & Ramesh, 2011).

There are many types of sensors used for detecting system, Table 2.2, shows most sensor used

for detection of explosive, all these sensors can be connected in different modes. The sensors

that can easily be seen are those of thermal, photoreceptors, mechanical, chemical and physical

sources.  Table  2.2  is  a  descriptive  table  and  characteristics  of  sensors  according  to  (AL-

Mousawi & K. AL-Hassani, 2018). The operation and description of the sensor will determine

the quantity of the explosive it will be used to sense. We have different types of sensors ranging

from chemical sensors, electrochemical sensors, and chromatography sensors and more, they

are known based on the kind of sensing work they perform. Even though there are several types

of  explosives  in  existence  that  does  not  mean  the  same  number  of  sensors  are  required.

Explosives  have  some  common  features  like  geometry,  material  density,  elemental
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composition,  and vapor  emissions that  could clearly classify explosive for  proper  choice of

sensor.  For geometry properties,  image shape is used. When explosive density becomes the

focus, it is believed that explosive is denser than other material. Another class is the vapour

emission  feature  that  senses  vapour  samples  and  analyze  those  (Kishore  Kumar  &  Murali,

2016)

Table 2.2: Sensors  and their Characteristic Properties (AL-Mousawi & AL-Hassani, 2018)

S/N SENSOR TYPE FEATURES OF SENSOR ENVIRONMENTA
L 
CHARACTERISTI
CS

1. Piezoresistive 

pressure sensors 

Membrane-in-cooperated  in the sensor

instrument that causes resistive changes

leading to pressure power

Pressure  power

applied on sensor

2. Capacitive  pressure

sensors 

The effect of pressure on the surface of

the  sensor  causes  deflection  and

noticeable change in capacitance 

3. Optical  Pressure

Sensor 

The sensor response to laser light from

optical  fibre  cable  that  produce

noticeable change of colour in response

to pressure changes.

4. Resistive  and

capacitive 

accelerometers 

A  Piezoresistive  is  connected  to  the

sensor  deflectable  cantilever  that

response to any alteration in resistance

to  yield movement

Acceleration  force

presenting  by

velocity

5. Piezoelectric 

accelerometers 

This is piezoelectric types of sensor that

yield charges when sensing materials is

stranded

6. Electromechanical 

temperature sensors

Respond  through  the  effect  of

temperature on the sensor material that

yield  electromechanical  motion  that

could be interpreted in specific area.

Temperature  and

Heat
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7. Resistive 

temperature sensors

Effect  of  temperature  on  resistance

result  in  same  effect  of  sensor  data

variations due to the resistance effect.

8. Thermistors This   sensor   type  has  resistor  with

deflectable  material  that  is  changed

with slight changes in temperature

9. Resistive 

temperature 

detectors (RTDs) 

sensor covers

larger  temperature

range

This  sensor  make  use  of  metal  oxide

and  resistive  temperature  detector  to

bring  a  noticeable  changes  in  the

environment, it consist of  pure metal

10. Humidity  sensors

the  substance

volume

Calculate the ratio of water vapours  Vapours in substance

11. Resistive  Humidity

Sensors 

Calculate  the  resistive  variations  in  a

known medium

12. Chemical sensors The sensor contains sensitive indicating

transducer  and  membrane  that  could

respond to chemical substance. 

Chemical 

components  and

materials

13. Interdigital 

transducer sensors 

Very  sensitive  layer  using  dielectric

between  electrodes,  the  dielectric

properties in sensitive layer are changed

according to the substance interaction

14. Conductivity 

sensors as gases

Highly  Sensitive  layer  that  conduct

flow of current and relate with chemical

materials.

15. Optical  chemical

sensors 

The sensor has a layer that easily deflect

in the form of  optical waveguide, that

quickly  respond  when  there  is  contact



1-28

between  the  substance  chemical  and

chemical substance that is of interest

16. Piezoelectric 

chemical sensors

Gives  rise  to  an  electrical  charge  on

crystalline when it is being stressed

17. Radiation sensors Monitors  level  of  radiation  to   detect

beta and gamma in the material

Everything 

associated  with

radiation

18. Geiger-Müller 

counter 

Made up of conductors that response to

the level of radiation.

19. Quartz  fibre

dosimeter 

Calculate  and  report  rate  of  radiation

received over time from a device.

20. Film badge Dosimeter  calculates  the  rate  of

radiation  level  coming  the  material  to

the sensing element

21. Thermoluminescent

Dosimeter 

Measuring 

Magnetic Sensor 

Calculate rate of radiation from visible

light  in  the  material,  it  make  use  of

magnetic field sensor.

Magnetic field

22. Light  and

brightness  sensor

Gyroscope sensor

Consist of up of basic optical operation

that  have  operate  like  structural  and

logical form

light  level  and

colours  degree

rotation ratio circuits

2.5.1 Communication of Sensor Network for Explosives Trace Detection System
The means  of  data  transmission between sensors  in  WSN does  not  need any form of  cable

connection  but  by  use  of  wireless  medium.  One  of  the  limitations  of  this  means  of

communication is its limited range, so the sensors and nodes must be placed in locations that

are not far from each other to effectively transmit data. This radio frequency range must be

carefully  identified  depending  on  the  type  of  application  because  each  application  has  its

specific frequency range. The applications could be industrial, health and scientific applications

(ISM bands)(AL-Mousawi & AL-Hassani, 2018). 
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The area under consideration where the Sensor nodes are evenly placed is referred to as sensor

field.  The  node  gather  data  within  a  sensor  field  and  transmit  this  data  to  where  it  can  be

processed  within  wireless  sensor  network  system  by  utilizing  multiple  hop  arrangement.

Passing information from the sensors to the processor is done through the internet or via the

satellite communication medium. The sink is the connecting link between sensor nodes and the

processing unit. (AL-Mousawi & K. AL-Hassani, 2018). Whenever information is to be shared

between the sensor fields, it will be done by the Base station, while information sharing among

sensor nodes ad-hoc network comes into play. In the design of WSN large bandwidth is always

been considered for adequate space for smooth data transfer. 

2.5.2 Explosive Sensor communication models

The mode of communication for Wireless sensor nodes is through the radio units. A particular

node is linked wirelessly with another node to both transmit and receive data between each

other. Mathematical model can be used to express the connectivity and transmission between

the two sensor nodes. One of common communication model employed is the disk connectivity

model  proposed  by  (Fong,  2017),  he  said  communication  between  sensor  nodes  are  only

possible  within  a  disk  and  that  it  occurs  within  the  range  of  the  radius,  the  radius  of  its

communication  range  is  called  communication  hub and that  is  the  range  two sensors  could

communicate.  This  focus  of  this  model  is  to  use  geometric  approach  to  analyze  network

connectivity which is quite simple in analysis but has limitation and not quite realistic because

there is not clear boundary between the successful and unsuccessful communication.

Within a particular distance the attenuation of a wireless signal is a function of path loss and

shadowing within that path referring to as path loss is express as to be the random fluctuations

in signal strength.  Through empirical  measurements it  was established that shadowing have

proved to have zero-mean normally distributed random variable with standard deviation (SD)

δ ϵ  (Fong, 2017). Environment varies in nature so most radio propagation models combines

both analytical and empirical approaches determining path loss shadowing. The popular model

is the radio propagation approach, by this log-normal shadowing path loss model which is given

according to (Fong, 2017) as: 

PL d = PL(dr) + 10γlog10
d
dr

+ ϵ   (2.3)
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PL is the path loss between transmitter and receiver, distance between transmitter-receiver is

denoted as d, while df is a reference distance and γ is the signal decay rate or what we call path

loss exponential, then ϵ  is a zero-means Gaussian distributed random variable that has SD of

δ ϵ  (dB) that expresses the shading effects. 

At distance d, the output power of the transmitter less the PL(d) is the received signal strength

 Pr. That is express as:

Pr d = Pt − PL d = Pt − PL df − 10γlog10
d
df

− ϵ           (2.4)

For a given value for which γ = 2,  δ ϵ = 4,  PL df = 15dB, d f = 1 ,  and for an output

power

 P t = 0 dB,  the  CC2420  IEEE  802.15.4,  with  2.4GHz,  the  analytical  propagation model is

shown in Figure 2.4.

From equation (2.4), Pr(d) ∼ N(Pt − PL(df) − 10γlog10
d
df

δ ϵ , ). Since P r d  is a Gaussian,

that  information  from  sensor  1  get  to  sensor  2  as  expected  is  expressed  as  a  function  of

probability the  two sensors , s i and s j  located at distance d from each other is given as:

 ρ Pr d > SSmin = Q(
SSmin − Pt − PL Pf − 10γlog10

d
df

δ ϵ
) (2.5)

Where  SS  ϵmim   is  referred  as  the  minimum  acceptable  signal  strength  and  Q  is is the

complementary cumulative distribution function of a standard Gaussian, so

Q x = 1
2π

∫ − ∞x e− t2
2 dt  (2.6)

Figure 2.5 is the channel path through which the signal is transmitted, it is observed that the

strength  of  the  signal  fades  with  distance.  Figure  2.6  shows  the  formulated  connectivity

indicating  how  some  area  that  supposed  to  receive  connection  are  being  discarded  with

receiving  power  less  than  SSmin  while  some  other  area  receives  power  more  than  what  is

expected, i.e., beyond the connectivity range receive of SSmin. The main limitation is that there

is no clear separation to determine the successful and unsuccessful communication among the

sensors (Fong, 2017).
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Figure 2.5: Channel Model,γ = 2,δ ϵ = 4, and  P t = 0 dBm (Fong, 2017)

:

Figure 2.6: Connectivity model (Fong, 2017)

2.5.3 WSN for Explosive Trace Detection Deployment 
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The major challenge in deploying WSN is where to place the sensor for  effective coverage

within  the  area  of  interest  to  be  surveyed and for  this  to  be  possible  a  careful  optimization

approach is used to achieve the design objective (Fong, 2017). The coverage objective is how

to make sure the sensors are well arranged to maximize the area of interest and in achieving

this the sensors must not be place too close or very far from each other.  This will enable the

sensing  capacity  to  be  fully  maximized.  For  better  performance  on  data  acquisition  in  the

localized area good deployment cannot be compromised. According to (Mao et al., 2019), two

types  of  deployment  approach  are  being  employed  which  are  deterministic  and  random

deployment. In the deterministic approach the environment in question is familiar, the network

functionality is rclaerly fixed and the sensor nodes are clearly placed in space. Mathematical

model that are often transform into a linear programing problem or static optimization problem

are being used to implement this. The hexagonal grids are usually used for nodes deployment

when maximum network coverage and eff/ective connectivity is of great interest. 

It was observed that deterministic model proved effective solution to deployment problem but

it is oversimple and too perfect. However, when harsh environment is to be considered and also

when large deployment is becoming difficult the random deployment will be the best option

(Mao et al., 2019). One of the setbacks of the Random deployment method is the inability to

guarantee full coverage, however, its cost effectiveness is a great advantage and when there is

no  strict  coverage  requirement  it  becomes  a  better  choice.  Some  tines  redundant  nodes  are

introduced to achieve desired coverage. 

Focusing  on  optimization  object,  the  deployment  of  nodes  is  divided  into  three  base

deployment  methods;  coverage-based,  network  connectivity-based,  and  energy  efficiency-

based deployment. High result operation of the WSN is determined by how well the network

is well represent in the target area. Node deployment of sensor network is greatly improved the

performance and coverage of the sensors. (Mao et al., 2019).

2.6 Internet of things (IOT) Application in monitoring Explosive Trace

Environment of interest can be monitored and this process which is known as the process of

capturing of values of data of interest in an outside environment. This approach can be used to

acquire and grade the data even if it’s a large volume of data (big data) using Internet of Things

Technology (Cunin et al., 2018). When we connect and attach sensors to communicate with the
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‘various  things’,  AI  application  can  be  used  to  enable  these  devices  to  share  real-time data

without human interventions. The IOT makes the society to be smart and flexible in adaptation

and  connect  the  digital  technology  with  real-world.  The  different  sensors  that  monitor

environmental quality can be connected to IOT system to operate autonomously. Figure 2.7

shows  IOT with  different  connection  that  can  be  anywhere,  any  environment  and  anytime.

Whatever is sensed is transmitted and the output is viewed through web application or in some

cases  edged  devices.  The  communication  is  through  wireless  means  with  appropriate

communication protocol. 

Figure 2.7: Concept of IOT in monitoring (Haji & Sallow, 2021)

Data collected by IoT environmental monitoring sensors in this case explosive traces within a

wild area of interest.  The environmental properties can be connected with a single ‘cloud-based

environmental  system’  through  the  use  of  Wireless  Sensor  Network  (WSN).  When  an  IoT

component fused with ML system can register, characterize, track, and analyze elements in a

specific environment’ (Haji & Sallow, 2021)

2.6 Related Works

In this section, worked carried out such as biological means, analytical method, technological

mean ranging from stand-alone sensors, sensor arrays, wireless sensor network and Artificial

Intelligent (AI) approach in explosive trace detection will be reviewed. 

2.6.1 Animal olfactory Systems 

Chuen et al.,  (2020) has shown that  animal’s methods have proved to exceed technological

approaches in explosive trace detection especially for the fact that it can detect multiple traces

of explosive concurrently and this is what sensor array network technology is finding difficult

to achieve. Animal such as dogs, rats, pigs and honeybees are used to detect explosive traces.
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Even though several animals are being used, dogs are commonly been used. In demonstrating

the efficacy of dogs in explosive trace detection.

Command & Belvoir, (1978) shows a study that demonstrated the explosives trace detection

by dog-handler teams which was carried out by Nolan and Gravitte, the teams were trained to

detect landmines. The dogs recorded averaged detection of location accuracy of over 80% with

several  teams  averaging  90%  correct  location.  Further  studies  were  carried  out  on  this  to

examine the efficacy of detection teams, the training was improved and maintenance protocols

developed by various agencies to validate the result scientifically. When the explosive was free

from contamination and negative controls such as interfering samples, it resulted in improved

accuracy of the detection. Another well-accepted work administered by the North American

Police  Work  Dog  Association   that  recorded  about  91.6%  accuracy  on  target  odors  was

recorded in (Frost, 1990). The test was conducted on six different explosive odor classes over

four of five different search areas. Although this publication was not peer-reviewed but was

reviewed by panels  of  recognized experts  before  adoption.  Sensitive  and trained dogs were

used by military during World war II to detect explosive and since then civilians began to used

it  for detection of drugs and explosive (Furton & Myers,  2001).  Some of putative olfactory

receptors from the dog detection have been cloned with subsequent characterization of some

of the molecules. It has been shown that smell is the mechanism through which dog uses to

detect explosive as dogs with defected sense of smell do not perform well in detection task.

The Department of Defense program, which uses 500 explosive detection canines worldwide

and  has  a  proficiency  requirement  of  at  least  95%  detection  rate  for  the  targets  (known

explosive odor standards) used and 5% or less nonproductive rate (alerts to distracter odors), is

one  specific  example  of  how  the  reliability  of  explosive  detection  canines  is  repeatedly

substantiated. (Thiesan et al., 2005). Among behavioral factors evaluated are type and duration

of search, alertness of the team, responsiveness of the dog to the handler, and, the handler’s

skill  in  observing  the  behavior  of  the  dog  and  interpreting  those  observations.  Detection

becomes more challenging since a living thing must be involved for accurate detection rather

than  relying  solely  on  instrumental  approaches.  The  U.S.  Congress  asked  the  Treasury

Department to set standards for bomb-sniffing canines with the Bureau of Alcohol, Tobacco,

and Firearms (ATF), suggesting the contentious standard of 100% accuracy on 60 tests. This

move brought attention to the long-debated canine standards for bomb dogs. (Thiesan et al.,

2005).  Gazit et al., (2003), worked on implementation of a device that is used for operational

research. The device aimed at assisting the handlers of sniffer dogs by the police to compare
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the  effectiveness  of  the  dog  in  detecting  explosive.  The  device  was  able  to  improve  the

efficiency of search in such operations. The device is to identify whether dogs utilized as a part

of hunt are capable sniff or not. Those devices are incorporated with system that associates in

remote recognition and investigation of explosives. While dog detection of explosive seems

very good, adverse environmental conditions can easily affect it (i.e. high temperatures, long

search times) and more prone to operator influence. The scientific knowledge acquired through

the instrumental devices is generally more acceptable because it can be proved scientifically.

For dog explosive detection calibration standards cannot be able to run and identify the specific

explosive  to  make  alert  specific  to  the  explosive  type  because  the  detector  dog  teams  use

sequential calibration (Thiesan et al., 2005). Dog training is quite costly because it takes a lot

of time and effort to train them well. Animals are generally only useful for a few hours a day

and have a tendency to become fatigued and distracted. This is a downside to their utilization.

When  they  simultaneously  detect  explosive  odors  from  multiple  sources,  they  can  become

confused (Liu et al., 2019).

Under this biological approach used for explosive trace and some harmful chemicals detection

Rodacy et al., (2002). The honeybee’s colony was used to cover a wider area that has different

media such as  land,  water,  air  and plant,  as  they will  be moving they came in contact  with

pollutants in the air,on plant and water that were in gaseous form, particulate or liquid form.

These  contamination  are  used  to  train  the  bees,  in  the  process  chemical  such  as  2,4,6-

trinitrotoluene (TNT) have been used. Honeybees have been used to collect sample as well as

locating contaminated areas and also to indicate anomalies in the area. In the experiment they

setup  sugar-water  feeder  closed  to  honeybee’s    colony  and  positioned  explosive  trace

substances very close to it. The honeybees did not only got attracted to the sugar-water but also

the explosive odor so that anywhere such substance is present in the future there will gather

there thereby detecting explosive traces. In their work they achieve an accuracy of 98%. (Girotti

et al., 2013) in their work Honeybees was used as biosensors since pesticides could affect their

usage, they are then used to collect contaminant within the environment. Once there is changes

in the environment, honeybee will behave differently and that can be a sign to predict explosive

substance.  (Bajić,  2014) tried to solve the challenge of  locating the explosive trace through

honeybees localization since honeybees has been accepted for explosive trace detection in a

wild area. In their work they used methods such as 

lidar, microwave dipole and detecting the third harmonic of the radar waves,  and also using

spectral features to detect the honeybees. Methods such as electro optical sensors, use of long
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distance thermal camera combined with digital image processing have equally been deployed,

in this case UAV was used. Although honeybees training is less and could cover more areas in

detection of explosives trace like TNT, C4 and TATP explosives at parts-per-trillion levels  but

weather and night condition can easily affect the operation of the honeybees and may not also

be deployed in areas where human beings are present (Chuen To et al., 2020)

Poling  et  al.,  (2011)  proposed  the  use  of  trained  pouched  rats  for  explosive  like  chemical

detection. The training was carried out in a metal cage that has a small hole in the underneath

and a pot was presented with a sample that has some small drop of about a 100ng per microliter

of 2,4,6-trinitrotoluene (TNT). The person carrying out the training made a click sound and

present mouthful of mashed bananas mixed that was mixed with crushed rat chow through a

plastic  syringe  and  the  rat  will  smell  through  the  nose  for  sometimes.  When  this  positive

training was ended the discriminative training was done where the trainer will serve the rats

food along with the TNT sample by the hole and this will be done relatedly for several times

until the rats only response when TNT sample is present with the food. They carried out the

test using 34 rats with each rat covering 186,800 m2 and false alarms rate per 100m2 was 0.33

per 100 m2. While this has the advantage of portability and been less expensive, training takes

much time and rats are not readily been available.

2.6.2 Analytical Approach for Explosive Trace Detection

Due  to  abilities  of  unique  nature  of  the  chemical  constituents  of  explosive  substances  it  is

possible to analyze explosives contents as that was presented by the work of Wasilewski et al.,

(2021). The method has aided in instruments design and development of the strategy aimed at

detection  of  explosives  trace  with  these  systems.  This  method  that  is  referred  to  as

chromatographic  includes  the  thin  layer  chromatography,  gas  chromatography  (GC),  high

pressure liquid chromatography (LC), capillary electrophoresis, and ion chromatography; then

spectroscopic  or  spectrometric  methods  such  as  infrared,  ion  mobility  spectrometry  (IMS),

mass  spectrometry  (MS)  are  used.  Shahraki  et  al.,  (2018)  suggested  using  a  negative  ion

mobility  spectrometer  in  conjunction  with  an  ionization  source  to  detect  explosives.  In  the

investigation, explosive trace was detected using negative ion base thermal ionization operating

in the air. In order to detect the mobility particle of typical explosion compounds like TNT and

RDX in air, the ionization was enhanced by doping a chlorine chemical for the negative ion. It

was determined that IMS is a highly regarded and frequently used technology in the majority

of US airports for the detection of traces of nitro-organic explosives on carry-on luggage and
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bags. One challenge is that since most explosives yields negative ions and most operated in the

negative  mode  failed  to  detect  trace  on  certain  compounds  e.g.  TATP traces.  To  solve  this

problem of IMS not able to detect certain traces from some compound, Crocombe et al., (2021)

proposed  the  dual-tube  IMS that  could  detect  both  negative  and  positive  ions.  Under  IMS,

sample vapors are often transformed into ions at atmospheric pressure, and the characteristics

of  those  ions  under  mild  electric  fields  are  their  gas  phase  nobilities.  However,  the  vapor

concentration  dependency  of  the  ion  mobility  spectrum  and  the  seemingly  erratic  response

caused by memory and humidity effects impeded the quick development of IMS and (Gary &

Eiceman, 2006) has solved this problem earlier by developing an in-field analyzer that can best

be represented by the handheld Chemical Agent Monitor. This development has made IMS to

be found in most of the airport for screening against explosive substance. (Smith et al., 2020),

developed flexible drift tube IMS system that is not expensive, the system that was constructed

using a single printed circuit board was used to analysis common explosive substance such as

RDX, TNT and PETNT and was found to have a detection limit of few nomogram and this

make  IMS device  to  be  close  to  the  substance  meant  to  be  screened.  This  had  earlier  been

established by the work of (Mokalled et al., 2014), where qualitative analysis of a real explosion

residue and explosive sample taken from a suspect was carried out and the explosive material

and trace were identified successfully. It recorded a detection of explosives at Nano-gram levels

and about six seconds response times, even with the little advantage of high speed in detection

because it took only few seconds to detect explosive traces, its low selectivity was a serious

drawback.

Evans-Nguyen et al.,  (2021) proposed a fieldable Mass Spectrometry (MS) system used for

security  application.  The  system  works  based  on  membrane  inlet  systems  and  hybrid  gas

chromatography  and  the  system  recorded  fast  detection  and  also  an  improved  selectivity.

(Yinon, 2007) reported that the use of Mass Spectrometry (MS) for detection of explosive trace

was based on the masses of the atoms and the molecule of the explosive substance. The mass

to charge radio (m/e) is determine from the time and space of the charged substance in a force

field. Since ions have difference m/e ratio they recorded different time of flight. A system was

proposed to detect traces of explosive residues on aircraft boarding. The work focuses on how

to detect traces of explosive residue on passengers that may had made contact with explosive

substance  and  such  substance  would  have  been  left  on  their  body.  An  investigation  of  the

quantities of explosive residues on previously used boarding cards was conducted. The residues

are detected by the system prior to the passenger entering the aircraft and are transmitted by
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touch to the boarding pass. A triple quadrupole mass spectrometer (MS/MS) was used to collect

the generated vapors, which were then observed using selective reaction monitoring (SRM).

Corona discharge is used to ionize the material. One of the produced ions is chosen to enter the

collision cell and react with the nitrogen molecules there, producing a series of product ions.

Precursor  adduct  ions  are  seen  for  RDX,  PETN,  and  NG  when  an  additive,  such  as

dichloromethane,  is  added  to  the  MS.  Every  hour,  the  system  could  process  one  thousand

boarding passes. This result is based on a background investigation into the levels of explosive

residues  on  two  thousand  boarding  passengers.  According  to  Yanon  (2007),  an  explosive

detection personnel portal is a walk-through system for quickly screening staff members for

traces  of  explosives  at  locations  like  airports  or  federal  buildings.  This  is  an  additional

application  of  IMS  in  explosive  detection.  A  mass  spectrometer  detector  was  used  in  the

construction  of  the  Syagen  Guardian  MS-ETD  Portal  (Grove  et  al.,  2019).  The  following

explosives  were  found:  Tetryl,  ammonium  nitrate  fuel  oil  (ANFO),  triacetone  triperoxide

(TATP), hexamethylene triperoxide diamine (HMTD), RDX, HMX, PETN, EGDN, NG, and

TNT..  Analysis  time is  less  than  15s.  MS recorded improvement  in  selectivity  but  its  huge

devices that are very expensive is required for large scale deployment of sensors in the wake

of  ever-increasing  terror  attacks  prevailing  in  different  part  of  the  world  was  a  limitation

(Kishore et al., 2019). 

Adegoke  &  Nic  Daeid,  (2021)  proposed  a  method  for  explosive  trace  detection  called

“colorimetric optical Nano sensors for trace explosive detection using metal nanoparticles” The

system  is  based  on  the  work  of  Almog  &  Zitrin,  (2009)  that  color  reactions  leads  to  the

production of product that can be identify by its colour and this is a form of chemical reaction

that is used to know the type of compound in used. So when you treat explosive compound

with the right reagent can produce a unique colour that can be used to identify the constituent

elements. Several system like Fluorescent and colorimetric sensors for selective detection of

TNT  and  TNP  explosives  in  aqueous  medium proposed  in  Junaid  et al.,  (2022)  have  been

developed based on this technology. The sensor based colorimetric system was able to respond

to TNP and TNT substance very rapid. The fluorescence colorimetric methods is found to be

one of the pronounce technique in detecting explosive trace. Fluorescence quenching methods

remain the most popular technique. The major limitation of colorimetric method is the use of

color  reactions  for  the  analysis  of  explosives  that  lies  in  their  low  specificity,  some  non-

explosive  chemical  may  produce  the  same  colour  and  that  is  why  colorimetric  approach  is

combine  with  system  to  obtain  the  best  result.  It  could  only  effectively  work  for  specific
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explosive  or  particular  explosive  compound  designed  to  detect,  for  a  wider  range  of  field

operation multiple colorimetry sensors have to be designed.

Remote detection of explosive trace using Raman Technology was presented by Hao et al.,

(2022). The technology was based on focusing of Laser Beam. They used two enhanced Raman

spectroscopy methods to improve the low sensitivity observed in existing Raman Technology

to detect explosive trace from Distance. In their method that used convex lens to converge the

laser beam while collecting the Raman signal, the plasmonic spray was used to prevent Raman

scattering along the surface. This enhanced approach achieved remote Raman detection up to

thirty (30) meters different types of explosive with about 1 μg/cm2 of consecration. It was and

improve  version  of  Raman  technology  that  was  based  on  exciting  a  sample  with  a

monochromatic light like laser, the  explosive chemical composition radiate light at different

frequency  that  can  be   differentiate  from  the   from  what  exist  in  the  environment.  Raman

spectroscopy is  then used to collect  the Roman spectra scattered light of the sample from a

distance as a means of detecting substance that contain explosive trace (Gares et al.,  2016).

This  system  involve  the  user  of  different  types  of  laser  that  is  hazardous  to  human  safety

especially  the  safety  of  the  eyes.  According  to  (Regis  et al.,  2018)  Another  setback  of  the

Raman  technology  is  that  fluorescent  do  interferes  with  its  operation  or  when  strongly

absorbing substance is being used. Its operation fails on metals and it does not cover large area

2.6.3 Electronics Nose for Explosive Trace Detection

It was discovered that the usual electronic nose components are a chemical sensor array and an

artificial  neural  network  according  to  Liu  et  al.,  (2019).  This  array  of  sensors  has  unique

properties that allow it to detect explosive traces of the target fragrance. Explosive traces are

identified  via  an  adaptive  pattern  recognition  study  of  the  signatures  using  techniques  like

artificial  neural  networks,  and  the  pattern  recognition  process  allows  the  identification  of  a

particular explosive. According to Peveler et al. (2016), many electronics noses in array, such

as a fluorophore array, were utilized for explosive chemical detection and discrimination.  A

quick reaction was achieved from a tiny amount of sample after array units were combined into

a single multichannel platform. Using quantum dots as fluorescent probes, the multichannel

platform detects  and  distinguishes  between five  explosives:  TNT,  DNT,  Tetryl,  PETN,  and

RDX. Another illustration was the colorimetric electronic nose, which was exhibited for the

vapor phase detection and explosives classification. It was based on a handheld scanner and a
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cross-reactive array (Askim et al., 2016). With a discriminating error rate of less than 1%, the

array  consisting  of  40  colorimetric  response  sensors,  16  explosives  including  conventional

explosives,  characteristic  explosive  components,  and  homemade  explosives  was  able  to

distinguish between 14 classes. Nonetheless, it is currently generally accepted that electronic

noses are insufficient to identify the minute amounts of chemicals that dogs consume. Future

developments  will  aim  to  expand  the  system's  coverage  and  improve  sensitivity  and

dependability. This improvement in the e-nose is what (Gradišek et al., 2019) used to utilize a

16-channel  e-nose  demonstrator  that  was  based  on  micro-capacitive  sensors  with

functionalized surfaces to measure the response of 30 different sensors to the vapours from 11

different substances, including the explosives 1,3,5-trinitro-1,3,5-triazinane (RDX), 1-methyl-

2,4-dinitrobenzene  (DNT)  and  2-methyl-1,3,5-trinitrobenzene  (TNT).  In  their  work  they

developed a classification model through. Random Forest algorithm that was used to train set

of  signals,  the  varied parameters  in  their  test  were the concentration and flow of  a  selected

single vapour. The model was able to recognizeand successfully classified the signal pattern of

different sets of substances at an accuracy of 96%. Ot shows that the silane monolayers used in

their sensors as receptor layers are can identify TNT and similar explosives from among other

gaseous substances. 

(Chowdhury  et  al.,  2008)  suggested  a  portable  electronic  nose  system  that  uses  five  Metal

Oxide  Semiconductor  (MOS)  sensors  that  are  available  for  purchase.  A  microcontroller  is

utilized to recognize patterns in the MOS sensors. Black tea scent is classified using the feed

forward  multilayer  perceptron  (FF-MLP)  method  in  the  IC  (PIC18F4520).  In  order  to

determine the ideal architecture, weights, and biases of the neurons, the MLP is first trained

using  the  backpropagation  algorithm  with  the  fingerprint  from  the  sensor  array  and  the

corresponding tea tasters' mark in a PC. The samples were collected from various gardens in

northeastern and eastern India. After training, the IC is programmed with the computed weights

and biases of the neurons, enabling it to function as a portable device that provides the fragrance

index  for  newly  discovered  tea  samples  without  further  processing.  When  compared  to

unidentified  finished  black  tea  samples,  the  results  show  that  the  ic-based  electronic  nose

system performs on par with the PC-based electronic nose system.

Using  237  completed  tea  samples,  the  performance  of  the  microcontroller-based  electronic

nose  was  assessed.  Of  these  samples,  4000  patterns  were  evaluated  for  testing,  while  the

remaining 60% were utilized to train the BP-MLP neural network model. In contrast to the PC-

based electronic nose, which has an accuracy of 85.7%, the microcontroller-based electronic
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nose  obtained  values  of  83.6%.  With  a  little  quantity  of  tea  samples,  It  was  found  that  the

accuracy of the FFMLP microcontroller-based electronic nose is somewhat less than that of the

PC-based electronic nose. This could be because the portable version of the microcontroller

uses an inbuilt 10-bit ADC, whereas the PC-based electronic nose uses a 16-bit A/D converter.

Additional comparable work was completed by (Hasan et al., 2012), In order to detect spoilt

meat  kept  in  refrigerators,  they  created  an  electronic  nose.  The beef  and fish  samples  were

analyzed by an electronic nose, which then used a support vector machine (SVM) classifier to

determine which meat was causing the bad stench. The experiment is run for a week in order

to assess. The findings show that the SVM classifier performs well in generalization and allows

for an accuracy rate of about 94.5% for both fish and meat. This indicates that SVM is a useful

pattern  classification  method  for  identifying  rotten  meat  using  an  electronic  nose.  With  the

addition of nano-enhanced sensors and changes in pattern recognition thanks to neural network

technologies,  electronic sensor work to mimic human nose sensing capability has improved

and  now  can  detect  and  identify  minute  amounts  of  explosive  chemicals  (Mokalled  et  al.,

2014). The challenge of wider coverage has been confronting the Sensor designed for explosive

trace Detection and to also have sensors that could detect multiple explosive the same time. 

2.6.4 Sensor Network for Explosive Trace Detection

The sensor network technology tries to solve the problem of multiples sensing of explosive

trace and also solve the problem of monitoring a localized environment against explosive trace.

The sensor network is applicable to all the types of sensor used in detection explosive trace.

 So et al., (2009) proposed Laser-based atmospheric trace-gas sensors with great potential for

long-term,  real-time,  maintenance  free  environmental  monitoring  in  distributed  Wireless

Sensor Networks (WSN was proposed. A laser based chemical sensing technology with wide-

area autonomous wireless sensor networking as the final target was developed. The prototype

sensor measures atmospheric oxygen concentration in the form of a battery powered, handheld

unit with power consumption <0.3W, sensitivity of 0.02% in 1 sec, weight of <0.4Kg without

batteries,  low  cost,  high  specificity,  and  the  robustness  required  for  long  term  sensing

applications. A gas plume localization and quantification using a prototype three-node sensor

network  was  demonstrated.  The  technology  is  modular  and  can  be  used  for  different

environmentally important molecules such as different environmentally important molecules

such as CO2 NOx, and methane with exceptionally high specificity.
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A reliable security threat warning system for public spaces like train stations, enabling security

personnel  to  respond  quickly  to  bomb  threats  was  designed  according  to  Simi  &  Ramesh,

(2010).  Using  a  multi-phase  wireless  sensor  network,  the  technology  offered  a  means  of

accurately and quickly detecting explosives in order to decrease, control, and alert people to

impending terrorist action. The chemical makeup of explosives was determined using a number

of  wireless  sensor  nodes  that  were  integrated  with  various  kinds  of  sensors.  The  system

dynamically  collected  data  from  the  sensing  nodes  using  several  orthogonal  strategies,

aggregated the data, and forwarded it to the sink node for additional analysis. In order to verify

the  suspected  items,  a  mobile  node  was  subsequently  added,  improving  the  target  tracking

system and lowering the frequency of false alarms. In the work of (Simi & Ramesh, 2011) a

multi-phase wireless sensor network design solution for monitoring was proposed. In order to

lower the amount of false alarms, the system makes use of several wireless sensor nodes that

are integrated with various sensor kinds and target tracking mechanisms. In order to respond

quickly to bomb threats, this system offers an efficient warning mechanism for security risks

in public areas. (Song et al., 2011) conducted research on the development and deployment of

a wireless electronic nose (WEN) system that could identify and quantify the quantities of the

flammable  gases  methane  and  (CH4 / H2).  Two  wireless  sensor  nodes  in  the  system  can

function as either a slave or a master node. In slave mode, it consists of a wireless transceiver

unit (WTU) that transmits the detection results to the master node connected to a computer, a

digital signal processor (DSP) system that processes and samples sensor array data in real time,

and a Fe2O3 gas sensing array for the detection of combustible gases. A Fe2O3 gas sensor type

that is resistant to environmental effects is created that is insensitive to humidity. On a DSP, a

threshold-based  least  square  support  vector  regression  (LS-SVR)  estimator  is  used  for

concentration and classification calculations. The findings of the experiments verify that LS-

SVR  outperforms  standard  support  vector  regression  (SVR)  in  terms  of  accuracy  and

convergence rate,  outperforming artificial  neural  networks (ANNs).  Gas mixture analysis is

accomplished efficiently and in real time using the WEN system that was built. The system has

limited application to be extended to other types of gases, particularly those associated with

explosive trace.

(Rejeti et al., 2019) tried to establish the need to have a simple and effective network that can

monitor  an  area  against  anti-social  element  such  as  explosive  actions.  They  developed  a

detecting  system  that  can  detect  explosives  reliably  and  accurately.  In  their  work  a

comprehensive framework that have all ingredients to detect explosives and integrated them
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with  a  wireless  sensor  network  (WSN).  It  was  used  to  detect  RDX  and  TNT  explosives

component. Explosive Detection Algorithm (EDA) was developed and proved to be effective.

The simulation results shows great improvement over existing methods. Their work was not

used to test other types of explosive component to show overall improvement.

In another development, explosive detection in border areas that handles threats from people

and detect terrorist activities, they used PIR sensors for detecting person and metal detector

was  used  for  detecting  explosives  respectively,  while  a  camera  was  used  for  continuous

monitoring of the scenario at a remote station. They studied different technologies involved in

the system. They include Bluetooth technology and infrared technology. They implemented a

simulation study in Visual Basic using these three technologies (Minni & Siddharth, 2016).

Simi & Ramesh, (2011) designed a reliable security threat warning system for public spaces

like  train  stations,  enabling  security  personnel  to  respond  quickly  to  bomb  threats.  By

accurately and quickly detecting explosives,  the system made use of a multi-phase wireless

sensor network to provide a means of mitigating, controlling, and alerting people to impending

terrorist action. The chemical makeup of explosives was determined using a number of wireless

sensor nodes that were integrated with various kinds of sensors. The system constantly gathered

data from the sensing nodes, aggregated it, and sent it to the sink node for additional analysis

based on various orthogonal methodologies. In order to verify the suspicious items, a mobile

node  was  added,  improving  the  target  tracking  system and  lowering  the  frequency  of  false

alarms. Their system could not clearly discriminate against noise.

AL-Mousawi &  AL-Hassani, (2018) to address the challenge of wider coverage of the sensor

presented  a  work  on  wireless  sensor  network  for  explosive  detection.  Utilizing  specialized

sensors that are compatible with wireless sensor networks is necessary for explosive detection.

The three primary axes of wireless sensor systems covered in this study are as follows: the first

axis  concerns  the  scalability  of  wireless  sensors  in  explosives  detection  technologies.  The

connectivity  and  mobility  of  these  networks  and  sensor  are  the  second  axes  of  the  WSN

explosives detection system. He discussed the need of using hyper sensor type that contains

buddle of sensors for different simultaneous sensing. The challenge in WSN is the issue sensor

security and latency, the WSN generally experience delay in transmitting information. 
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2.6.5 Artificial Intelligent in Explosive Trace Detection

The introduction of AI based technology in explosive trace detection is mainly to enhance the

selectivity and sensitivity of the sensors and also try to solve the problem of latency in sensor

network to achieve faster respond time. Different work has been done in this field.

Kapitanova  et  al.,  (2010),  suggested  event  detection,  which  is  a  key  element  in  many

applications  involving  wireless  sensor  networks  (WSNs).  We  think  that  the  frequently

inaccurate sensor readings are too much for sharp values to manage.  In their  research,  they

showed that the accuracy of event detection is greatly increased when fuzzy values are used in

place  of  crisp  ones.  They proved that  a  fuzzy  logic  method outperforms a  few well-known

classification algorithms in terms of detection precision. However, it was that using fuzzy logic

has the drawback due to exponentially growing size of the rule-base. Sensor nodes have limited

memory and storing large rule-bases could be a challenge. To address this issue, a number of

techniques that help reduce the size of the rule-base by more than 70% while preserving the

level of event detection accuracy was developed. Mølgaard et al., (2017) offered a data-driven

machine learning method for air sampling that uses colorimetric sensor technology to identify

precursors of drugs and explosives. Utilized was the sensor technology developed within the

framework  of  the  CRIM-TRACK  project.  Currently,  a  fully  functional  portable  prototype

featuring  automated  data  collection  and  disposable  sensing  chips  has  been  created  for  air

sampling. Large datasets of colorimetric data have been produced for several target analytes in

laboratory and simulated real-world application scenarios thanks to the prototype's quick and

easy sampling process. In order to reliably classify target analytes from confounders present in

the air streams, many machine learning algorithms were utilized to leverage the very multi-

variate data generated by the colorimetric chip. It was shown that relevant features and a high

analyte detection rate can be obtained by combining a probabilistic classifier with a data-driven

machine  learning  technique  that  uses  dimensionality  reduction.  Moreover,  the  probabilistic

machine learning methodology offers an automatic way to detect measures that are incorrect

and may result in inaccurate predictions. 

A  series  of  studies  concentrating  on  the  amphetamine  precursor  phenylacetone  and  the

improvised  explosives  pre-cursor  hydrogen  peroxide  have  been  conducted  to  assess  the

durability  of  the  colorimetric  sensor.  The  investigation  shows  that,  in  real-world  sampling
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circumstances,  the  system  can  detect  analytes  in  clean  air  and  combined  with  naturally

occurring chemicals. The technology being developed for CRIM-TRACK has the potential to

be a useful tool for law enforcement applications such as bomb detection and drug trafficking

control. 

Deming et al., (2017) carried out a work on feasibility study where an artificial neural network

was used to detect person-borne improvised explosive devices (IEDs) from images acquired

from  a  radar  array  sensor,  an  infrared  (IR)  camera  sensor,  and  a  passive  millimeter-wave

camera sensor.  The data  set  was obtained from the U.S.  Department  of  Homeland Security

(DHS)  Science  and  Technology  Directorate  (S&T),  and  consists  of  hundreds  of  images  of

human subjects concealing various simulated IEDs, and clutter objects, beneath different types

of clothing. The network used for detection is a hybrid, where feature extraction is performed

using a multi-layer convolutional neural network, also known as a deep learning network, and

final classification performed using a support vector machine (SVM). The performance of the

combined  network  is  scored  using  receiver  operating  curves  for  each  IED  type  and  sensor

configuration. The results demonstrate (i) that deep learning is effective at extracting useful

information  from  sensor  imagery,  and  (ii)  that  performance  is  boosted  significantly  by

combining complementary data from different sensor types. The focus of the work was not on

trace  and  since  images  data  where  used  the  computational  time  is  high.  Their  work  only

considered  fabricated  IEDs  and  not  the  possible  properties.   Al-mousawi  &  Al-mousawi,

(2019) in their work represented a new direction in detecting magnetic explosives by the use

of  a  wireless  sensor  network  adapted  with  machine  learning.  The  Improvised  Explosives

Devices (IED) consider a series threat due to the easy manufacturing. However, the scientific

directions heading towards the use of information technology in the development of explosives

detection  systems.  They  focused  on  the  type  of  explosives  used  is  the  magnetic  explosives

which are a type of IEDs that is used in targeting the vehicles. A Magnetic Explosives Detection

System (MEDS) is a wireless sensor network system that uses a network of magnetic sensors

to detect the magnetic field that emitted from magnetic effector and consider this magnetic field

as a possible threat. The experiments of the system show its ability to detect the change in the

magnetic field caused by the magnet stacked under the vehicle.  The main use of the neural

network algorithm in this paper is to determine the highest reading among a series of readings

to determine where the threat exact position. Excellent results produced by the neural network

algorithm in the MEDS to enable the system from learn and identify the required data type. 
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Fisher  et  al.,  (2020)  proposed  machine  learning  approach  to  improving  Trace  Explosive

Selectivity  which  they  applied  to  Nitrate-Based  Explosives.  In  the  work,  machine  learning

methods were utilized to examine the extent of improvement in IMS selectivity for detection

of  nitrate-based  explosives.  The  work  considered  five  classes:  ammonium  nitrate  (AN),  an

∼95:5 mixture of  AN and fuel  oil  (ANFO),  urea nitrate (UN),  nitrate due to environmental

pollution,  and  samples  that  did  not  contain  any  explosive  (blanks).  The  preliminary  results

clearly  show  that  the  incorporation  of  machine  learning  methods  can  lead  to  a  significant

improvement in IMS selectivity. (Liu et al., 2019). The effort to enhance the selectivity and

reliability  several  work  have  been  done  such  as  (López  et  al.,  2017)  that  used  Principal

component Analysis (PCA) on metal oxide sensor (MOX) array and that was able to identify

explosive  samples  and  discriminated  between  them  and  other  substances  like  Ethanol  and

Vinegar, a k-Nearest Neighborhood algorithm was used with k equal to 3. A Leave-one-out

cross-validation strategy was established to estimate the classification rate of the final model

which  they  recorded  as  86%.  (Wang  et  al.,  2005)  had  previously  used  a  novel  intelligent

technique based on support  vector  machine (SVM) classification for  electronic  nasal  signal

detection.  SVM  functions  under  the  tenet  of  minimizing  structural  risk,  which  ensures

improved generalization capacity. After demonstrating the SVM's fundamental idea, the gas

classifications were recognized using the SVM as a classifier. The method can overcome the

drawbacks of  artificial  neural  networks by classifying complex patterns,  achieving a  higher

recognition rate at a reasonably small size of training sample set. There has been a presentation

and discussion of the tests  conducted to identify three distinct gases:  acetone, gasoline,  and

ethanol. The findings show that the SVM classifier performs well in generalization and raises

the  tested  samples'  average  recognition  rate  to  88.33%.  This  indicates  that  the  suggested

approach for electronic nose signal recognition is successful. One of the area of electronic nose

sensor to improve is the area of selectivity and this to to enhance the accuracy of detection of

the analytes. 

In further development, the application of a convolutional neural network (CNN) to facilitate

IED detection was proposed by Colreavy-donnelly et al.,(2020). An autonomous sensor array

was utilized in a  related research to find the devices in areas that  were too dangerous for a

person to survey. CNN and its training approach are appropriate for using the sensor system in

this work. In real time, this convolutional neural network can detect and discriminate between

natural features of the surrounding undergrowth and a potential IED. In well-lit environments,

the CNN was able to identify the IEDs with 98.7% accuracy because to the training process.
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The suggested CNN performs better than its rivals, including the deterministic approach, when

the results are compared to those of other convolutional neural networks and a deterministic

algorithm. The limitation of his work is that the environment must be well illuminated before

high  accuracy  could  be  recorded,  what  happen  if  the  attack  is  to  take  place  in  a  dark

environment.

According Fisher et al., (2020), the preferred technique for finding traces of explosives in most

airport  and  border  crossing  environments  is  ion  mobility  spectrometry  (IMS).  The  IMS

detection  limits  are  low  enough  to  meet  security  standards  for  the  majority  of  explosives.

Nonetheless, the selectivity is insufficient for certain explosive families. One such category of

explosives is nitrate-based explosives, where it can be difficult to distinguish between different

nitrate hazards and ambient nitrates. Machine learning techniques were applied to investigate

the degree of enhancement in IMS selectivity for nitrate-based explosives detection, using a

limited  database.  This  exploratory  investigation  looked  at  five  kinds  of  nitrate:  urea  nitrate

(UN), nitrate from environmental contamination, ammonium nitrate (AN), a ˆ95:5 mixture of

AN  and  fuel  oil  (ANFO),  and  samples  free  of  explosives  (blanks).  The  initial  findings

unequivocally  demonstrate  that  applying  machine  learning  techniques  can  significantly

increase IMS selectivity. Zapata & García-Ruiz, (2021) conducted thorough analyses of a few

basic ideas regarding explosives and the two widely used categories of them according to either

their application or their velocity of detonation. They claim that while the current classifications

are very helpful in the legal and military spheres, they are of no use in figuring out the chemical

makeup of explosives. The classification of explosives according to their chemical makeup was

the  main  topic  of  their  review.  This  classification  succeeded  in  creating  a  distinct  general

classification  by  combining  the  chemical  classifications  of  explosives  present  in  literature.

Explosive was classified into single explosive and mixture explosive; the single explosive was

further classified into organic and inorganic explosive. The work provides adequate knowledge

of the chemical composition of explosives but did not indicate the appropriate sensor to indicate

the presence of these chemical composition.

Wongwattanaporn, (2021) proposed a way of finding a suitable classification technique to be

implemented in an electronic nose so as to imitate the sniffer dogs in detecting the explosive

chemical substances. In the work, eight different classification techniques, which are Logistic

Regression, Support Vector Machine (SVM), Decision Tree, Random Forest (RF), Adaptive

Boosting,  K-Nearest  Neighbors,  Gaussian  Naive  Bayes,  and  Multilayer  Perceptron  in  both
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binary  and  multi-class  gas  sensor  array  open-source  datasets  where  compare  in  terms  of

accuracy of detection. The experimental results show that RF and SVM models perform better

with average score of 99.66 and 98.93, respectively. Much data where needed to carry out the

training,  in  real  life  scenarios  adequate  data  may not  be  available  for  training of  the  model

which may reduce the accuracy of the model, he did not equally focus of detecting the explosive

trace within an area.

Djedidi et al., (2021) suggested an innovative method for detecting the presence of one of the

three harmful gases—CO, NO2, or O3—either alone or in mixes, relying on a single physical

sensor and data-driven algorithms. In the hardware portion of the project, a single Metal Oxide

(MOX)  sensor  was  connected  to  two  heaters.  A  supervised  machine  learning  model  was

implemented in the software portion. The sensor changes its electric signals in response to the

various gases and their mixtures that it is subjected to. The core dataset for the discrimination

consists of these raw signals and the heater readings. The raw dataset is enhanced by computing

multiple  time-domain  characteristics  for  every  measurement  in  order  to  improve  the

classification results even more. Following a ranking of the characteristics, the features that

best  address  the  categorization  problem are  chosen.  Following  data  preprocessing,  a  multi-

Support Vector Machine model is trained and validated using the features that were chosen.

The system was able to detect and classify the various gases with high accuracy, but with the

use of multi-Support Vector model computation time will be high and when you don’t have

much data, it will affect the accuracy of the system. 

2.7 Summary of Literature and Research Gap 

The review of similar works on Explosive Trace Detection (ETD) can be classified under the

categories and the gap as identified from literature summarized as followed:

The use of Animal in Explosive Trace Detection: It was established that animal such as dogs,

rats and bees is one of the best method for detecting explosive trace and they are currently still

been used (Chuen et al., 2020). They could detect multiple analytes the same time and Bees

particularly  can  be  used  to  monitor  large  area  against  explosive  trace.  Generally  the  use  of

animals has drawback due to the tendency of the animal like dogs and rats getting distracted

and tired and can only be used effectively for a few hours a day. Sometimes they get confused

in case they smell explosive from several sources simultaneously. The use of animals can be

restricted in areas where human beings are present. It is equally very expensive to train animals
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for explosive trace detection and to train them for such it require long period of time (Kishore

et al., 2019). There is therefore need to develop a system that can monitor an environment of

interest irrespective of the terrine of the environment and such system can work independently

without constant human intervention. Since the system will be setup once it will reduce cost

compare with the use of animal to detect explosive traces. 

Explosive Trace Detection based on analytical instruments: in this approach a method called

chromatography is used, gas chromatography (GC), high pressure liquid chromatography (LC),

and ion chromatography (Wasilewski et al., 2021). Pronounced method involves spectroscopic

or spectrometric methods such as infrared, ion mobility spectrometry (IMS), mass spectrometry

(MS), and Colorimetric and Raman technology. This approach uses two sets of anionic and

cationic  analytical  methods  after  conversion  of  the  chemicals  to  respective  ions  to  allow

identification and confirmation of the presence of inorganic explosive residue. One of the major

drawback of this method is that these devices are bulky and highly expensive to deploy to tackle

the challenges of increasing terrorism. Inability of the technologies to monitor large area is also

a limitation. Since sensor can be so tinny, the sensor network base approach can be hidden and

thereby  become  invisible  to  people  carry  explosives,  into  the  secure  areas.  This  make  the

proposed method viable to be deployed in an area without terrorists knowing that such detector

system is present in the environment. 

Electronics Nose in Explosive trace detection: Electronic nose which is a technological device

designed to  mimics  animal  in  sensing explosive substance explores  the  biological  olfactory

function. Its ability to distinguish complex volatiles substances, makes it unique to the principle

of olfactory system. The Electronics nose has the sensing part and the artificial neural network

that makes the system achieve better results (Liu et al., 2019). The limitation is that they may

not be able to detect multiple analytes the same time and if they are to achieve that there must

be in array. The array of sensor can comprise several sensors types and thereby be able to detect

multiple types of explosive trace. This make the system highly reliable.

The Sensor  Network:  For  the Electronics  nose to  have wider  applications and coverage the

sensor array network and wireless sensor networks are been introduced. Sensor array were built

for detection of multiple constituents, while WSN where used for wide area cover but one major

challenge  here  is  the  problem of  latency  and  sensitivity  of  the  sensors  (Al-mousawi  & Al-
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mousawi, 2019). Solving the challenge of sensitity has made machine learning model a better

approach in designing a sensity system that could detect explosive traces with high accuracy.

Machine Learning in Explosive Trace Detection: For accuracy of detection and high sensitivity

of Sensor network that detect explosive trace, different machine Learning Algorithm are been

developed  in  Explosive  Trace  Detection.  Convectional  Machine  Learning  model  such  as

Support  Vector  Machine,  KNN  and  CNN  where  used  and  to  achieve  high  sensitivity  and

accuracy the Deep Learning Model such as Convolutional Neural Network was proposed and

achieve better results compare to other methods (Wongwattanaporn, 2021). Deep learning was

also introduced to improve selectivity, it achieved that with large dataset that could not solve

the problem of  latency.  The limitation of  the traditional  machine learning model  is  that  the

system was more accurate on what it has been trained for and much data were also need

The proposed method is Deep Transfer Learning for Explosive Trace Detection (DTLETD) is

effective in solving the problem of explosive trace detection from limited data. Explosive trace

data are very limited because of the nature of restrictions in acquiring the data and also the cost.

There is need to develop a system based on DTLETD that can work on edge device that will

be light in size with high accuracy of  detection of  explosive trace in the presence of other

chemicals. The development of lighter weighted model that could be used on edge device while

solving accuracy problem is one of the main problem DTLETD tries to solve.
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CHAPTER THREE
 METHODOLOGY

3.1 Problem Formulation

The  security  of  a  localize  place  against  the  high  rise  of  explosive  attack  has  become

inevitable and the electronics sensor network play a significant role in being used to detect

traces of explosive within an area to be secured. For accurate, precise and timely explosive

trace detection system, machine leaning approach has been used for sensor base detection

system but using the existing machine learning approach could only detect traces that the

models are familiar with. The issue of lack of explosive data and longer time of training

using deep learning is also a problem desiring solution. To solve the problems, there is need

to develop Deep Transfer Learning for Explosive Trace (DTLET) model based on CNN

model. The proposed method will be developed based on the CNN model and is expected

to be accurate and light weight for deployment on edge devices. The system is expected to

be fast in detection with little dataset. 

3.2 Proposed Framework for Explosive Trace Detection

The proposed framework for area based explosive trace detection system consist of a CNN

based model known as GasNet that will be fine-tuned then reconstructed into a new model,

this model was used  to train explosive trace data from scratch as indicated in Figure 3.1.

The knowledge gained was used to test and validated explosive trace data from the sensors

array.  The sensors are placed within the environment of interest to form array of sensor

network which can be in a form of Wireless Sensor Network.  These sensors respond to

explosive trace and their response are converted to electrical signal that will be converted

to digital signal that form the new input to the Deep Learning transfer model for explosive

trace detection. Figure 3.1 shows the complete framework for area based explosive trace

detection consisting of sensor network, signal conditioning, signal conversion process and

the proposed model of DTLETD. The adopted base model is GasNet (Pai et al.,2018) which
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will be fine-tuned with appropriate layer adjustment and then the learned knowledge will

be transferred to predict explosive trace. The validation data was generation from the sensor

in the implementation model of the area-based explosive trace detection system. This set

up  is  meant  to  generate  data  for  the  developed  model  for  validation.   The  result  of  the

prediction will be used to notify the appropriate authority for corresponding actions.

  

Figure 3.1: Conceptual Framework of DTLETD

3.3 Research Process and activities 

The explosive trace Detection system shall involve development of an accurate classifier for

the  detection  of  substances  containing  explosive  is  achieve  through  series  of  operational

activities. Figure 3.2 shows the training model activity program which involve receiving a Deep

convolution neural neatwork (GasNet) model that is used to train explosive trace dataset, the

model  is  adjusted  and  fine-tuned  to  form  a  new  base  model.  The  training  and  testing

performance  results  was  obtained  for  both  training  dataset  and  testing  dataset  and  will  be
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presented in Chapter four. Figure 3.2 shows the Activity diagram for training the model of how

input data is received to the model, layers freeze and reconstructed to obtain the new model.

 
Figure 3.2: Activity Diagram for Training the model

The development activity diagram for the transfer learning model is shown in Figure 3.3 where

the input data is from the sensor array network. The sensor data is Preprocessed and used on

the developed model based on knowledge gained from Figure 3.2 to classify explosive trace.

The performance of the system is evaluated for corresponding results.
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Figure 3.3: Development Activity Diagram for deep transfer learning

3.4 Deep Transfer Learning for Explosive Trace Detection Model

In  this  work,  we  utilized  the  possibility  of  Deep  Learning  (DL)  model  to  accurately  detect

explosive traces results with limited explosive trace data set collection which is important for

future experiment design that could detect explosive trace with limited explosive trace data on

edge devices.  The system is  to detect  the explosive trace very fast  with high accuracy.  The

Deep transfer learning model is developed to be accurate, fast and light-weight classification

that  can  be  deployed  in  sensor  network  in  order  to  identify  explosive  substances  within  an

environment. Since the deep learning model requires considerable large volume of explosive

data for better performance. Explosive trace data is very scarce because of the restriction in the
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manufacturing of explosive and the precursors of same. It will be very necessary to use readily

available  data  with  similar  characteristic  to  first  train  the  model  before  implementing  it  on

explosive trace data. The conceptual model of Deep transfer learning is shown in Figure 3.4.

Available online dataset from gaseous pollutant will be used as source data, while target data

will be the explosive trace dataset collected from Sensor Network.

Figure 3.4: DTL Technique conceptual diagram

The source data are input into Deep Transfer Learning (DTCNN) for training based on GasNet

DTCNN model. The model will be transfer to the target data to achieve the ETDTL model.

Fine tuning will be done to achieve the best result in case of any variation between the source

data and target data.
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3.5 Data Collection

The dataset (Hossny el tal., 2020) used in this research is the numerical data representing the

concentration of gas traces.  It is a vector of one-dimensional (non-spatial) data consisting of 1

X 5 features for a total of 69, 514 samples, with input features being C, N, O, H, and output

feature being the target.  The output state is either 1 or 0, where 1 represent a case when the

combined concentrations of the input features suggest explosive trace, and 0 represent a case

of  non-explosive  trace.   However,  since  this  dataset  is  on-spatial  in  nature,  whereas  deep

learning  and  CNN in  particular  performs  well  on  spatial  or  image  data,  it  is  appropriate  to

convert the source data to spatial or 2-dimensional data, a procedure which will map the vector

samples into corresponding pixel equivalents as shown in Figure. 3.3, where the feature vector

x is mapped or transposed to feature vector for each target sample.

Figure 3.2: Data to Image Conversion

The  conversion  process  follows  a  process  that  defined  in  the  block  diagram represented  in

Figure. 3.4, which shows that the process begins with obtaining the dataset, next is cleaning the

dataset by scaling and normalizing the sample data.  Feature engineering and visualization is

performed to analyze the characteristics of the data.  The fourth stage is to convert the vector

data to spatial data before using it to tune the GasNet and eventually training a new model.

Figure 3.3: Block Diagram for Data Conversion
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3.5.1 Data Normalization  

The  preprocessing  approach  starts  with  data  normalization  which  involves  the  process  of

ensuring that all the feature data are within same range of 0 and 1.  This process is important

for ensuring that dataset does not overfit or underfit the model during training.  

The method used to  achieve this  was  Min –  Max scaling technique,  shown in  equation 3.1

below.

X' =
x − xmin

xmax − xmin
 3.1

Where xmax = the largest value of the feature

xmin = the smallest value of the feature

if x is minimum, x – xmin = 0 hence x’ = 0

if x is maximum, x – xmin = xmax – xmin hence x’ = 1

if x is between max and min value, x’ is between 0 and 1

3.5.2 Data Visualization and Balancing 

The dataset used consists of 10, 000 data points or samples.  The data were in two categories,

namely  explosive  and  non-explosive  categories.   Figure  3.4  shows  the  distribution  of  the

dataset based on these categories.

The dataset was pre-processed after checking to determine if there were any missing value and

dataset balanced between the two classes were done.  

Figure 3.4 show the distribution of data categorize into explosive and non-explosive image that

is as a result of numeric data conversion to create the image. During this process, the numerical

values were read row by row, and using the row matrix to form a new 2x2 matrix.  Each value

in the matrix was used as a pixel value representing a shade of images.
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Figure 3.4: Distribution of the dataset categories

The distribution shows that the explosive category has a total of 5, 347 samples (53%), while

the non-explosive category has 4,653 (47%) data samples.  This distribution was a case of slight

imbalance in the dataset, since there is the existence of majority and minority classes in the

dataset.  Such situation could lead to biased predictions and misleading accuracy.  Therefore,

this data must be balanced.

To create a balance in the dataset, the Synthetic Minority Oversampling Technique (SMOT)

was used.  This approach uses linear interpolation to create synthetic values of the minority

class.  Algorithm 1 below was used to implement the SMOT.

Algorithm 1:

Let the minority class set = A, such that 

Loop:
Determine the k-nearest neighbor by computing the Euclidean distance between each x in

set A
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Set  new  x’  between  each  nearest  neighbor  such   that  where

.  Fix  new  point  as  x’  along  the  lines  segments  of  the

neighbors

Set N = N – 1

If N ≤ 0
Goto 5

Else Goto Loop

Stop

3.5.3 Data Conversion to 2D

During this process, the numerical values were read row by row, and using the row matrix to

form a new 2x2 matrix.  Each value in the matrix was used as a pixel value representing a shade

of image as shown in figure 3.6 information.  In this way, images were formed from numerical

data.  The output images were separated and stored as JPEG files into folders based on their

respective classes.  The two main folders created for this purpose were “Explosive” and “Non-

Explosive”. The code for the implementation is shown in appendix A in the appendices section.

Moreover,  the  data  were  divided  into  training,  testing  and  validation  subsets.   The  training

subset was 70% of the whole dataset, test subset was 20% and validation subset 10%.
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Figure 3.5: Explosive Trace Images and non-Explosive Images

This stage involves loading and preprocessing image data from the subsets.   This was

done  by  first  defining  variables  for  holding  the  image  path  where  the  images  were

stored.  The code for achieving this is shown in Figure 3.7 below.

Figure 3.6: Code for Data to Image Conversion

When the images were loaded into the variables, the dimensions were further reshaped

to ensure that they all maintain the same size.  This was achieved using the following

code in python.

This means that all the images will maintain height and width pixel dimensions of 24 x

24, 1 channel since the images are already in gray scale. 
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3.5.4. Image Data Augmentation 

Data  augmentation  is  process  that  ensured  that  our  model  generalized  well.  The

ImageDataGenerator class in keras was used for this purpose. The process includes a

series of random transformation of images such as rotation, flipping, zooming, cropping

and brightness/contrast  adjustment.   This  stage was achieved using the code snippet

shown  in  figure  3.8  below,  while  the  full  code  for  the  augmentation  was  shown  in

appendix E

Figure 3.7: Image Data Augmentation code

The code show that our images were randomly rotated by 40 degrees, scaled by a factor

of 1/255, horizontally and vertically skewed to 0.2, and zoomed by a factor of 0.2.

3.5.5. Convolution Neural Network Development

In this stage, the CNN model was developed with the development phase following the

general  structure  of  the  CNN architecture.   The  stages  involved  the  following  layer

development:

1. Convolution layer design

2. Fully connected layer design

3. Design of the Output Layer

3.5.5.1. Design of the Convolution Layer

The convolution layer consists of the following:
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1. Image feature map or image matrix, X, which is a 2x2, which was scaled by padding to

3x3 matrix (2D)

2. A filter, f, a 2x2 matrix.

The operation performed at this layer therefore is the convolution, Z(2x2) of X and f, which is

the sum of the element-wise product of X and f, and this can be expressed as:

Z 2,2 =  ∑X 3,3 * f 2,2 3.2

Our  convolution  layer  with  3  D-sub  layers  was  developed  using  keras  in  the  code  snippet

presented in Figure 3.9

Figure 3.8: Code for Convolution Layer Development

The first 2D convolution layer was a designed with 32 filters, each being a 2x2 matrix filter,

which  uses  the  Rectified  Linear  Unit  (ReLU)  activation  function.   The  output  of  the  first

convolution (Conv) layer was passed through 2x2 Max Pooling operation, before being fed to

the next Conv layer.  The second Conv layer had 64 2x2 filters, with ReLU activation function.

The third Conv layer had 128 2x2 filters also with ReLU activation function.

3.5.5.2. Design of the Fully Connected Layer

This is a neural network layer and can only work with 1D data.  This implies that the output of

the last Conv layer, which is a 2D must be converted into a 1D image by flattening as shown

in Figure 3.10, and was now to be fed into the fully connected layer.  In the fully connected

(FC) layer, linear and non-linear transformation operations were performed on the 1D data fed

into it.
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Figure 3.9: Conversion of 2D to 1D

The linear transformation operation is represented by equation 3.3 below.

Z= wT ∙X + b 2.3

Were

X is a vector of the image feature extracted from Conv layers

w is a 4x2 the matrix of weight (a matrix of randomly assigned values)

b is a vector of biases (a constant value)

The FC had 2 neuron to linearly transform 4 data points in the X image vector.  Therefore, Z

was given as 

Z=  w11 w21
w12 w22

w31 w41
w32 w42

D1
D2
D3

+  b1
b2

3.4

During the non-linear transformation, an activation function was chosen for the output of the

FC.  Sigmoid function in equation 3.5 was the best choice at this stage because we are dealing

with binary classification.

f x =  1
1 +  e − x                                                                                                                         3.5

The final task during the model development was to determine the method of optimization, a

process that was used to update the learning rate of the model to ensure that all computations

converge correctly.  Adam gradient decent defined in equation 3.6 was used.
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θ2 =  θ1 − (α × gradient parameter) 2.6

Where

θ1 is the New parameter

θ2 is the old parameter

α  is  the  learning  rate  (a  constant  that  determines  the  amount  of  change  to  be  made  to old

parameter)

Gradient is the change in classification error with respect to parameter

The code snippet that was used for the implementation is illustrated in Figure 3.11

Figure 3.10: Model Optimization Code

3.6.  Approach and Technique(s) for Explosive Trace Detection Using Deep Transfer

Learning

The  approach  and  technique  used  in  this  research  is  experimental  approach,  in  which

experimental  model  of  machine  learning  algorithm  based  on  Deep  Transfer  Learning  was

developed for the purpose of detecting explosive traces by means of classification.  Transfer

Learning (TL) is a machine learning method that transfers the skill used in learning a task to

another scenario of learning a different task.  Deep Transfer Learning (DTL) is a TL that is

based on the deep neural network architecture. 

In this research, explosive traces were detected using Artificial Intelligence (AI) model.  Deep

Transfer Learning model was developed from a base model known as GasNet from (Barrera et

al., 2020) which was developed from Deep Convolution Neural Network with 38 layers.  Out

of these number of layers, 6 inner (deep) layers were frozen, reconstructed (tuned) and trained

using Explosive Gas concentration dataset from UCI website.   To classify explosive gas within
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an area, sensor are deployed to detect the concentration of Carbon (C), Hydrogen (H), Oxygen

(O), and Nitrogen (N) gasses, which are combined and sent to the newly trained model.  The

model then uses the learned knowledge to classify the gas combinations as either explosive or

not.  

3.6.1 Transfer Learning Model Formulation for Explosive Trace Detection

Transfer learning is based on the theory of Identical Element (IE), which state that transfer of

learning will take place if the two tasks to learn from have identical features (Campbell et al.,

2006). This suggests that in the case of this research work, that GasNet and the proposed model

of this research should have some sort of identical features in their input dataset. This implies

that the output of output function may be different from each other.

The notation representing TL in its general context is that if a domain, D is given by 

D =  X, P(X)  3.7

Where  X = Feature Space

P(X) = Marginal Probability Distribution

X = x1, x2, x3…, xn ∈ X 

In the context of this research, x1, x2, x3, x4 will represent C, H, N, and O, and hence will be

represented as xC, xH, xN, xO. 

This therefore implies that, given an explosive classification label, Y, can be determined by the

predictive  function,f(.),  which  can  be  learned  from  the  training  dataset  (xi,yi)|i ∈ X,  where

xi ∈ X, and yi ∈ Y.  This implies that f xi ≡ P(yi|xi)  is the conditional probability of detecting

an explosive gas from a given set of xC, xH, xN, xO.

The conceptual framework is presented in figure. 3.2. The framework shows the various layers

involved in the development of the model, which achieves the first objective of this research.  

The base model is a DCNN model that have been previously trained with very large dataset,

for the detection of gases in an e-nose application.  The model was tuned by reconstructing the

inner or deep layers by freezing 6 layers and replacing them with new ones for the application

of the task at hand.  This process is also known as feature extraction.  The final stage is the

training of the new model by adjusting and testing on new data.

In this framework, the base model is first tuned by freezing 6 inner layers and reconstructing

them by introducing new layers since P(�t|Ｘt)Explosive ≠  P(�s|Ｘs)GasNet) .
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3.6.2 Transfer Learning Model Development

The  developed  CNN model  in  section  3.5.5  was  modified  at  the  output  layers  so  that  data

generated by a simulation model were fed into it for further training and to demonstrate a virtual

deployment environment (see section 3.x1) for areal-based explosive testing.  This setup was

necessary to be able to test the model with real-time data for the sake of validating the results

of the model’s performance metrics. 

The procedure in developing the DTLETD model is represented in the activity diagram shown

in figure 3.12 that shows the data generation stage, development of new model and new model

validation. This process the following stages:
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Figure 3.12: Transfer Learning Activity Diagram for Explosive Trace Detection

As it can be seen in figure 3.12, a set of simulated data were generated using the simulation

model in section 3.7.  The generated data were in the range and format of the dataset used in
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training  the  base  model.   That  is  data  were  generated  each  for  C,  N,  O  and  H  features

respectively.  A set of 20 samples of simulated data were generated as shown in table 4.1.

After  storing  the  simulated  data  in  a  table,  the  pre-trained  CNN  model  was  loaded  the

Convolution Layer of the CNN model was frozen to prevent that layer from being affected by

the  modification  during  the  development  of  the  transfer  learning  model.   The  code  section

responsible for this is given in figure 3.13

Figure 3.13: Code for Freezing the Convolution Layer

 

This  stage  was  for  the  development  of  the  remaining  layers  of  the  CNN model  in  order  to

develop a new model, while retaining the components of the frozen layer.  This was achieved

using  the  code  snippet  in  figure  3.14.   The  code  has  the  first  line  for  initializing  a  model

variable, followed by the line that called the base-model, which is the pre-built CNN model.

After that was then added, a new output layer (flatten layer). A new dense layer with 128 units

was added, and each fully connected to the flattened layer through ReLU activation function.

This was followed by a dropout layer with a dropout rate of 0.5.  Finally, an output layer was

added with a single unit of sigmoid activation function.

Figure 3.4: Code for creating new model

During this stage, the newly developed model was trained using the validation data samples,

which was about 10% of the base dataset.  The code snippet is presented in figure 3.15 and the

full code is shown in appendix C. The code typically represents steps for the model to learn

from new data samples while retaining its knowledge of the previous experience.  The code

also specified the hypermeters, such as learning rate, batch size, and epochs.
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Figure 3.11: Code for fine-tuning the new model

The next stage was the evaluation of the newly built model.  The fine-tuning accuracy score

and  the  AUC  were  determined  and  recorded.   The  system  was  further  tested  using  the

simulation gas data, and the test accuracy score and AUC were recorded as well.  Graphs of the

system training validation losses against the epochs as well as losses against learning rate were

also plotted and presented in figure 4.8 and 4.9 respectively.

3.7 System Deployment and Testing 

The  block  diagram  of  figure  3.16  represents  the  implementation  model  of  the  area-based

explosive trace detection system. This set up is meant to generate data for the developed model

for validation as shown in the design framework in figure 3.1.  The diagram has four major

sections, which include the Input Unit, Edge Interface Unit (EIU), Cloud Intelligent Unit (CIU),

and the Output Unit.

3.7.1 Description of the Input Unit

The  input  unit  consists  of  an  array  of  three  sensors  from  the  MQ  series.   The  sensors  are

responsible for the sensing of the explosive traces by detecting certain characteristics of the

various trace components in the deployed environment.  Our input trace elements are the C, N,

O, and H gases as shown in figure 3.1.  Therefore, the categories of MQ series sensors used

were such that could detect the presence of these trace elements.  For instance, MQ-7 was used

for detecting CO from which C was detected, MQ- was used for the detection of Hydrogen gas,

while MQ-135 was used for the detection of the Oxygen and Nitrogen gases.  
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Figure 3.12: Block Diagram of the Implementation model

The characteristics  features of  these sensors are presented in table 3.1.   The sensors simply

converts any gas trace within its range of detection into an equivalent analogue signal, which

is measurable as a voltage range at the output pin of the sensors.  The output analogue voltage

was fed into the EIU for further processing tasks.

Table 3.1: Characteristics of the Sensor used

Sensors
Characteristics

MQ-7 MQ-8 MQ-135
Operating voltage +5V +5V +5V

Sensitive to CO Hydrogen NOH, NH3

Analogue output range 0 – 5V 0 – 5V 0 – 5V

3.7.2 Description of the Edge Interface Unit (EIU)

The EIU represents the processing unit, which receives the input signals from the sensor array.

Firstly, the EIU performs the analogue to digital conversion on all the input signals.  Secondly,

the  EIU separate  the  input  signals  into  various  components  before  compressing  the  signals

using 50th term averaging methods to reduce signal noise due to false trigger.  Thirdly, the

compressed  digital  signal  was  packaged  transmitted  to  the  cloud  using  HTTP protocol  and

Thingspeak cloud. The result of the out was collected. It should be noted that the out graph

generated on thinkspeak has a 10-1 multiplier, this is to accommodate thingspeak value range.
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3.7.3  Cloud Intelligent Unit (CIU)
At  the  CIU,  each  signal  component  was  collated  for  storage,  visualization  and  further

classification processing using the already built Transfer Learning Model.

Communication between this unit and the EIU is full duplex mode to allow for feedback to the

EIU and for  effective  communication of  the  result  of  classification to  the  output  unit.   The

output unit is an LCD module, which was used primarily for the display of the classification

result at any selected instance.

3.7.4 System Circuit Development and Testing

For a real deployment and testing for the detection of explosive traces, circuit in figure 3.17

was developed following the block diagram in figure 3.16 as described in section 3.7.1 above,

the input interface was realized using the MQ series gas sensors.  The EIC was realized using

Arduino Uno with in-built ESP wifi module.   The wifi module enabled seamless transmission

of  data  to  the  cloud.   The  output  of  the  MQ-8  was  connected  to  the  analogue  input  of  the

Arduino board (A0), MQ-7 was like-wise connected to the A1 pin and MQ-135 was connected

to the A2 of the Arduino board.  During the simulation testing, the potentiometers, RV1, RV2,

and RV3 were varied to allow the MQ sensors to generate random output values.  Each set of

generated output values were processed accordingly and transmitted to the cloud server using

the HTTP protocol. The Arduino code for proteus simulation is shown in appendix F.
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Figure 3.13: Circuit diagram of the Implemented system

3.8  Description of Performance evaluation parameters/metrics 

The acquired dataset is split into a training dataset and a test dataset, with 70% of the

data allocated for training and 20% for testing, while 10% for validation. This hold-out

method is commonly used to train DNN(Nguyen et al., 2021). The training dataset used

to train the model utilizing a three-fold cross-validation approach. This approach helps

to  prevent  the  model  from  becoming  biased  by  analyzing  the  evaluation  metrics  on

different folds of the data. The test dataset will be employed to assess the accuracy of

the  trained  model  on  sensor  dataset  for  the  trained  model  to  make  predictions  and

comparing those predictions to the actual values. 

 The trained model accuracy is obtained using Equation 3.7 and Equation 3.8, with the

test  dataset.  Where TP is the True Positive, FP is the False Positive, FN is the False

Negative, and TN is the True Negative. TP refers to an accurate prediction of a positive

explosive trace, while TN refers to an accurate prediction of a negative explosive trace.

FP occurs when a negative explosive trace is predicted as a positive one, and FN occurs
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when  a  positive  explosive  trace  is  predicted  as  a  negative  one.  The  F1-score  was

computed using Precision (Equation 3.9) and Recall (Equation 3.10). 

Confusion matrices are an effective tool for evaluating the accuracy of a classification model

as they provide a more detailed breakdown of the model's performance than a simple accuracy

score. Specifically, a confusion matrix tallies the number of true positives, true negatives, false

positives, and false negatives for each class or category. By examining these values, we can

calculate a range of performance metrics such as precision, recall, and F1 score, which provide

a more balance and informative picture of the model's accuracy. Additionally, by evaluating a

model's  accuracy using a  confusion matrix,  we can identify  which categories  or  classes  are

being  misclassified  most  frequently  and  adjust  our  model  accordingly.  This  can  help  us

optimize  our  model's  accuracy  for  specific  applications  and  ensure  that  it  is  performing

effectively in real-world scenarios. 

We will also use Area under Curve (AUC) to check whether the performance score is a true

representation of the accuracy. The higher the AUC the better the system performance and that

is a better way to check the system robustness.

The validation of the model, the model was tested on Explosive trace dataset from other sensor

network but in this virtual simulated network generated a live explosive data to determine its

performance. The performance is compared with other traditional machine learning methods

and other DL model in terms of accuracy and AUC. This proposed method is achieved using

Python software, Keras with Tensorflow as the backend. The trained GasNet model will then

be imported from keras to be ran on core i5, 8GHz Laptop, using NVIDIA GTX960 GPU.

�������� =  × 100 3.7  

     

�1 − ����� =2 × precision × Recall
Precision + Recall         3.8  
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��������� = TP
TP+ FP       3.9  

    

������ = TP
TP+ FN 3.10

Apart from these metrics the Receiver Operating Characteristic Area under Curve (ROC-AUC)

was also used to test the level of accuracy of the model

AUC = Area under the ROC curve

The ROC curve is a plot of the True Positive Rate (TPR) on the vertical axis, given as 

TPR =  TP
TP+ FN 3.11

Against the False Positive Rate (FPR) on the horizontal axis, given as 

FPR =  FP
TN + FP 3.12

3.9 Tools used in Implementation

The tools that was utilized to realize this research include the following:

a. Core  i5,  8ghz   personal  Computer  (PC)  that  was  used  to  carry  out  all  the  software

operations

b. Draw.io software was used to design the framework, flowchart and diagrams.

c. Google Collab was used to deploy the machine learning models, it was able to handle

the computational load of classification. 

d. Python software was used to write the codes

e. Keras  with  Tensorflow  as  the  backend  was  used  to  train  the  model  before  it  was

exported to be ran on the PC with.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Preamble

The results for the various experiments are presented in this chapter, firstly with the system

evaluation, the result for the proposed base model of CNN and the DTLETD. The result was

discussed  after  its  presentation  and  was  finally  compared  with  other  known  models  all  in

accordance with the research questions to be addressed.

4.2 System Evaluation
 In this study, the results are presented both Deep Learning model and Deep Transfer Learning

Model.  The Deep Learning model validation accuracy serves as a measure of how well  the

model  perform on the  explosive  trace  data.  The performance of  the  model  will  be  evaluate

when transfer  has  not  occur.  The second evaluation will  be  on the  Deep Transfer  Learning

model, where the model training loss will be evaluated together with the performance rate on

limited data. The rate at which the developed model learn will also be evaluated. By presenting

the results in this way, we can demonstrate the effectiveness and generalization capability of

DTL model  and provide  insight  into  how it  can be  further  improved in  the  future.  Overall,

emphasis  is  placed  on  learning  rate  and  thorough  evaluation  to  ensure  that  the  model  is

performing at  a  high accuracy and is  ready for deployment in real-world scenarios on edge

devices.

 Deep  learning  models  have  become  increasingly  popular  and  powerful  in  recent  years,

providing accurate predictions, and helping to enable many innovative applications. 

4.3 Results presentation and Analysis for Explosive trace Detection using CNN 

The results obtained from data preprocessing to the point of model deployment is presented in

this session with the corresponding analysis of the results.

4.3.1 Explosive Data Preparation Results

This results in this section shows explosive and non-explosive data set and the data conversion.

Figure 4.1 is the explosive trace and non-explosive trace data distribution used in this work

while figure 4.2 shows the data conversion result of the same. 
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Figure 4.1: Explosive and Non-Explosive Dataset Distribution result

Figure 4.2: Result of Explosive and Non-Explosive 2D Data

4.3.2 The result and Analysis of CNN on Explosive Trace Detection 

 The result of the model deployed using python 3.10 is shown in Figure 4.3, it shows the graph

of loss against the epochs.  The result show that during each epoch, the losses in the developed

model  was  inversely  proportional  to  the  epochs.   Meaning  that  error  that  would  produce
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misleading production was reduced sufficiently.  This confirms that the model performed well

with the dataset. The validation was done using validation dataset.

The result of the training performance evaluation is shown in Figure 4.4, it presents how the

model performed during training.  Accuracy was used as the metric of evaluation.  From that

graph, we see that during each iteration, the accuracy of the model was increasing and achieved

98.2% accuracy score.

The confusion matrix was used to evaluate the system performance during testing.  This plot is

shown in Figure 4.5.  The result shows that all the 32 samples used for the test were correctly

classified.  Out of that number, 18 samples were correctly classified as explosive, while the

remaining 14 samples were also correctly classified as non-explosives. Also the ROC curve in

Figure  4.6  also  confirms  that  the  model  performed  very  well.   For  both  classes,  the  model

archived an area under curve (AUC) value as 1.  This is the highest any model can achieve.

These result and those of other metrics are presented in table 4.1 and appendix G shows the

calculation.

Figure 4.3: Training and Validation Losses Result
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Figure 4.4: Graph of Accuracy against Epochs Result

Figure 4.5: Confusion Metrix of the CNN after Training with 7000 data points
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Table 4.1 Other performance Metrics of the CNN Model

ACC PRECISION RECALL F-1 SCORE SPECIFICITY FPR TPR AUC
0.982 0.985 0.985 0.985 0.949 0.051 0.985 1.00

Figure 4.6: Receiver Operation Characteristic Curve (ROC)

4.3.3 Result of Deep Transfer Learning Model for Explosive trace detection 

The simulation model described in section 3.6.1 was first used to generate some random new

samples of data resembling those of the original dataset.  The generated samples were stored in

table 4.1.  These set of data was used for the validation testing of the model, by being used as

input to the transfer learning model.  The prediction yielded the target values in each case.

The developed transfer learning model was trained with only 3 epochs and the graph in Figure

4.8  was  generated.   The  graph  is  a  plot  of  training  losses  and  validation  losses  against  the

epochs. The result show that the training losses dropped sharply from 0.15 to 0.08 during the

iteration of the first epoch and converged before the second epoch.  The validation losses also

dropped from less than 0.05 to 0 within the first epoch and it remained 0 during the second

epoch.

The result reveals the following significant achievements:
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1. The transfer learning model took less time (about 92 seconds) to train against a training

time of about 1287 seconds used to train the CNN model.  

2. The transfer learning model converged faster than the with nearly zero losses for both

training and validation

The Convergence of learning rate of the Transfer Learning Model is shown in appendix D while

Figure 4.9 is a graph of the training and validation accuracy against the epochs is presented.

During the iteration of the first epoch, it can be seen that the training accuracy already reach

99.7%, while the validation accuracy remained at 100% from the iteration of the first epoch.

Confusion matric presented in Figure 4.7 is also the performance report obtained during this

time.  Other results were the reports of other performance matrices shown in table 4.2.

Figure 4.7: Confusion matrix of the DTLETD after Training with 1000 data points

Table 4.2: DTLETD Performance Metrics

ACC PRECISION RECALL F-1 SCORE SPECIFICITY

False 
Positive 
Rate

True 
Positive 
Rate AUC

0.997 0.999 0.999 0.999 0.984 0.016 0.999 0.89

This result confirms that the transfer learning model adjusted very quickly with the dataset to

achieve very high and stable performance with the few data samples and small epoch size.  
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The  graph  in  Figure  4.10  represents  the  effect  of  the  tuning  of  the  learning  rate  (lr)

hyperparameter  on  the  training  losses.   The  lr  was  kept  as  small  as  10-3  at  the  start  of  the

training.  It was gradually increased as the training progresses.  The effect of increasing this

hyperparameters was that the losses got smaller until it converged at lr = 1.25 x 10-3.  
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Figure 4.8: Transfer Learning Training and Validation Losses against Epochs

Figure 4.9: Transfer Learning training accuracy and validation against Epochs
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Figure 4.10: Effect of Tunning on the learning rate

4.3.4 Results of the Simulation Model

The simulation model  of  the system deployment was completed using Proteus and Thingspeak

cloud.   The  circuit  was  setup  as  shown  in  Figure  3.15.  During  simulation,  the  system

communicated  with  the  Thingspeak  cloud  via  a  Wi-Fi  connection  interface  and  show the  data

transmission progress illustrated in Figure 4.11.

Other results of data transmission to the cloud are shown in Figure 4.12 (a) through 4.12(d). This

shows the various values of the explosive traced detected by simulation model over a period of

about 30 minutes with 10-1 multiplier. The range of values were between 0 and 1 as used in the

original  dataset.  These  simulated  data  were  used  also  to  further  validate  the  transfer  learning

model, which yielded the results shown in table 4.1, showing that the model achieved an average

prediction accuracy of 99.7%, with an average AUC value of about 0.89.  The system also yielded

a  precession  of  96%.   This  result  shows  that  the  developed  transfer  learning  model  could  still

produce high performance metrics values after deploying different data on it.  
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Table 4.3:  Simulated Sample Data of Explosive Trace

C N O H Target
0.677983 0.164722 0.516603 0.589594 1
0.528973 0.694318 0.860471 0.136377 1
0.053052 0.356432 0.106087 0.519277 1
0.748067 0.553447 0.365401 0.520955 0
0.032338 0.981841 0.780361 0.325508 0
0.96217 0.301966 0.399381 0.468742 1
0.432215 0.988033 0.067858 0.074884 0
0.096146 0.264949 0.124858 0.552386 0
0.69259 0.382476 0.323922 0.740827 1
0.24087 0.505574 0.499285 0.229094 1
0.830683 0.717169 0.967844 0.50378 0

Figure 4.11: Data Transmission between thing speak and Wi-Fi
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Figure 4.12 (a) Figure 4.12 (b)

Figure 4.12 (c) Figure 4.12 (d)
Figure 4.12: Graphic value for Explosive Traces Transmission

4.4 Discussion of the Results

This studies tend to develop an AI base system that can detect explosive trace automatically within

an  environment  of  interest  using  transfer  learning  model.  The  framework  for  the  system  was

developed as shown in figure 3.1 base on deep transfer learning that can detect explosive trace

with few explosive trace data with minimal time of training required. The designed framework is

in such a way for the system to operate within a smart city by communicating with appropriate

authority the presence of explosive trace to be able to take prompt action.

The explosive dataset  obtained is  a  time serial  dataset  and was converted to a  2D dataset  after

normalization as presented in Figure 4.2 through serial data to image data generator as presented

in section 3.3, this results is to generate an improved results for the CNN model.

The Gas-Net base model was development and with 70% of the data used for training the model,

20% for testing and 10% for validation for the 1,000 data points used, the system perform with

high  accuracy  of  98.2%  with  an  AUC  of  1.  Since  the  performance  of  the  system  high  and

acceptable as confirm by the AUC test, the knowledge of the model can be transferred for live test

using fewer dataset based on deep transfer learning. 

From the result of the experiment shown for the transfer learning model in Figure 4.8 through 4.10,

it was discovered that less time is required to train transfer learning model against the CNN base
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model.  The transfer learning model converged faster with nearly zero losses for both training and

validation experiment. Since the iteration of the first epoch has training accuracy of 99.7% and

validation accuracy at 100%, this result confirms that the transfer learning model adjusted very

quickly with the dataset to achieve very high and stable performance with the few data samples

and small epoch size.  

The result  in figure 4.11 and 4.12 validate that  deep transfer  learning model will  produce high

performance metrics values after deploying different data on it with the ability to maintain such

performance with reduced data. Deep transfer learning is appropriate for area base explosive trace

detection  where  the  system  is  expected  to  perform  with  high  accuracy  with  less  data  and  fast

adaptation.  

4.5 Benchmark of the results
The performance of the model is compared with other model such as Support Vector Machine,

ImageNet,  Random  Forest  and  K-Near  Neighbor,  The  Deep  Transfer  Learning   for  Explosive

Trace Detection (DTLETD) outperformed all with an improve training accuracy of 99.7 and AUC

of 0.89 as  shown in Table 4.4.  The detail  performance is  shown in table  4.5 and the graphical

representation of accuracy and AUC shown in figure 4.13. The parameter setting use for the SVN,

ImageNet, RNN, AlexNet shown in appendix H. 

   

Table 4.4: Comparing the proposed model and other Machine Learning Models

MODEL Validation Accuracy Validation AUC Training Time(s)

SVM 76 0.50 31.2

ImageNet 77 0.64 26.3

RNN 62% 0.63 28.8

AlexNet 67% 0.71 26.3

CNN 98.2 1.00 29.4

DTLETD 99.7 0.89 25.4
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Table 4.5: Metrics of the Benchmarking Results

ACC PRECISION RECALL F-1 SCORE SPECIFICITY FPR TPR
CNN 0.982 0.985 0.985 0.985 0.949 0.051 0.985

DTLETD 0.997 0.999 0.999 0.999 0.984 0.016 0.999
SVM 0.762 0.773 0.773 0.773 0.748 0.252 0.773

ImageNet 0.773 0.798 0.798 0.798 0.742 0.258 0.798
RNN 0.626 0.715 0.715 0.715 0.561 0.439 0.715

AlexNet 0.671 0.699 0.699 0.699 0.640 0.360 0.699

Benchmark Models

M
od

el
 P

er
fo

rm
an

ce

ImageNet AlexNet RNN SVM Current Model

120%

100%

80%

60%

40%

20%

0%

Benchmark Result

Accuracy AUC

Figure 4.13: Comparing accuracy and AUC of Current Model with other models
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Summary

Attacks on people and several public organization has made explosive trace detection a concern

on how best to secure sensitive environment of interest against potential attracts. The limitation

of human apparatus with the introduction of AI models have led to the development of smart

systems  that  can  detect  explosive  trace  within  an  environment  automatically  leveraging  of

machine leaning approach. Several attempts have been made in developing machine model that

can accurately detect explosive trace leveraging on WSN technology. 

In this work, a framework for area based explosive detection was designed to accurately utilize

deep transfer learning model to detect explosive trace. The deep transfer learning model was

developed  to  solve  the  problem need  for  quick  adaptation  of  model  and  also  to  be  able  to

accurately  function  with  little  available  data.  The  system  was  validated  using  10%  of  the

available  data  and  was  found  to  have  high  accuracy.  This  result  shows  that  deep  transfer

learning  model  can  work  well  in  detecting  explosive  trace  very  fast  with  little  information

available and that can be done even on edge devices. 

5.2 Conclusion 

Since terrorist attacks has become a global challenge in public places an AI system that utilizes

WSN technology and deep transfer learning model is proposed. The system was able to detect

explosive trace that compose of carbon, hydrogen, oxygen and Nitrogen component within an

area. 

The system recorded an accuracy of 98.2% with an AUC of 1 when the deep learning base

model  (CNN) was used.  However,  upon simulation,  data  were used to validate the transfer

learning model, the model achieved an average prediction accuracy of 99.7%, with an average

AUC value of about 0.89.  The system also yielded a precession of 96% and recorded the least
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training  time compare  with  existing  models.   This  result  shows that  the  developed  transfer

learning model could still produce high performance metrics values after deploying different

data on it. It shows that deep transfer learning model can adapt faster in detecting explosive

trace and will work well on edge devices because of its ability to predict explosive traces well

in the presence of few dataset.

5.3 Recommendations

This research focuses on detection of explosive trace that is only a particular type of explosive.

The  bulk  type  explosive  is  not  considered,  the  two  types  of  explosives  can  be  detected  by

integrating different both chemical sensors and vision sensor through enhanced AI integrated

model. This can bring about an enhance security of the area of interest against terrorist attack

in the form of bombs.   

5.4 Contributions to Knowledge

At the course of this research, we have provided the following contributions to knowledge:

i. A  2D  gas  data  visualization  for  Deep  learning  model  developed.  The  model

generate explosive image data from explosive trace serial data. This is shown in

section 3.5.2 it transform explosive trace serial data and produce image data that is

suitable  for  the  deep  convolutional  network.  The  accuracy  of  the  model  was

increased when the image was generated. It also made the operation more robust. 

ii. An  explosive  trace  detection  Framework  was  designed  to  show  the  stages  of

development in explosive trace detection. This design begins with the deep learning

base model, to how layers of the models are been frozen to develop a new model.

The framework is discussed in section 3.2 and figure 3.1 is the designed framework.

The  framework  also  show  how  real-time  explosive  data  will  be  generated  from

sensor network to validate the model and anytime explosive trace is being detected,

appropriated  authority  will  be  notified  for  prompt  action.  This  has  achieved  the

second objective of this research.

iii. An  improved  Explosive  Trace  Detection  model  (IETD)  based  on  Deep  transfer

learning. A model for explosive trace detection was developed called DTLETD as
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stated in objective three. Section 3.6.2 explained the procedure for the model, while

development  while  figure  3.12  shows  the  model  developmental  diagram.  The

model was tested and recorded a better performance compare to existing model

iv. A  light  weighted  model  for  explosive  trace  detection  that  can  be  run  on  edge

computers. The DTLETD model developed is scalable and have a fast training rate

that was able to perform optimally using limited data as recorded in the validation

test in section 4.3.4 and proved with the graph in figure 4.9. This system is lighter

than  the  normal  deep  learning  model.  This  fulfilled  objective  three.  The  live

deployment on edge device is beyond the scope of this work as discussed in the

scope.

5.5 Future Research Directions

 One main recommendation for future direction is the development of ML model that

can detect both explosive traces and bulk explosive the same time. The model should

be able to detect explosive substance in different state. 

 Considering  WSN  design  and  mapping  that  will  comprehensibly  cover  the  area  of

interest,  this  involves  how  the  sensors  should  communicate  effectively  with  one

another and the base server.

 Deploying  the proposed deep transfer learning model for real-time implementation on

edge devices can be used by security agents to monitor sensitive areas of interest against

explosive

 Another area to be considered is developing IOT base system that can communicate

with security agent and with exact location of the explosive trace in an area, this will

make the system part of smart city development.

 Another area that can be considered is sensor design that could lead in-cooperating ML

algorithm that can improve the sensitivity of explosive trace detection.
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APPENDICES 
APPENDIX A: Program code for converting numerical data into 2D images

numeric_dataset = pd.read_csv('samples.csv')
image_width = 2
image_height = 2
min_val = numeric_dataset.min().min()
max_val = numeric_dataset.max().max()
numeric_dataset = (numeric_dataset - min_val) / (max_val - min_val)
class1_data = numeric_dataset[numeric_dataset['Target'] == 1]
class0_data = numeric_dataset[numeric_dataset['Target'] == 0]
class1_data = class1_data.drop('Target', axis=1)
class0_data = class0_data.drop('Target', axis=1)
output_dir = 'explosive_dataset'
os.makedirs(output_dir, exist_ok=True)
for i, row in class1_data.iterrows():
    # Convert the row data to a NumPy array and reshape it into an image
    image_data = row.to_numpy().reshape(image_height, image_width)
    # Create a grayscale image
    plt.figure(figsize=(2, 2))  # Adjust the figure size as needed
    plt.axis('off')  # Turn off axis labels
    plt.imshow(image_data, cmap='gray', vmin=0, vmax=1)  # Set cmap to 'gray' for grayscale 
images
    # Save the image with a unique filename
    image_filename = os.path.join(output_dir, f'image_{i}.png')
    plt.savefig(image_filename, bbox_inches='tight', pad_inches=0, dpi=100)
    plt.close()
# Create a directory to save the generated images
output_dir = 'non_explosive_dataset'
os.makedirs(output_dir, exist_ok=True)
# Loop through each row in the numeric dataset and create an image for each
for i, row in class0_data.iterrows():
    # Convert the row data to a NumPy array and reshape it into an image
    image_data = row.to_numpy().reshape(image_height, image_width)

    # Create a grayscale image
    plt.figure(figsize=(2, 2))  # Adjust the figure size as needed
    plt.axis('off')  # Turn off axis labels
    plt.imshow(image_data, cmap='gray', vmin=0, vmax=1)  # Set cmap to 'gray' for grayscale 
images
    # Save the image with a unique filename
    image_filename = os.path.join(output_dir, f'image_{i}.png')
    plt.savefig(image_filename, bbox_inches='tight', pad_inches=0, dpi=100)
    plt.close()   
print("Image dataset created successfully.")
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APPENDIX B: Sample 2D image of dataset
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APPENDIX C; Transfer Learning Model Training for 10 Epochs 

APPENDIX D: Convergence of learning rate of the Transfer Learning Model

APPENDIX E:  Initializing the Libraries and the colab directories
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APPENDIX F: Arduino code for proteus simulation

#include <ArduinoJson.h>

//Gas Sensor Pins
#define MQ4 A1
#define MQ135 A2
#define MQ7 A3

void setup()
{
Serial.begin(9600); // opens serial port, sets data rate 9600 bps
}

void loop()
{
root["C"] = ppm_N;
root["N"] = ppm_N;
root["O"] = ppm_O;
root["H"] = ppm_H;

root.prettyPrintTo(Serial);
Serial.println("");

//Minimum delay required for ThingSpeak to update is 16 seconds
delay(16000);
}

Code for Thingspeak channel:
#include <ESP8266WiFi.h>
#include <ESP8266HTTPClient.h>
#include <ArduinoJson.h>
#include <SoftwareSerial.h>
#include "ThingSpeak.h"

SoftwareSerial mySerial(5, 6);
WiFiClient client; // Creating WiFiClient Object

//ThingSpeak Channel's API Keys
unsigned long myChannelNumber = CHANNEL NUMBER;
const char * myWriteAPIKey = "API KEY";
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//Add your WiFi credentials here
const char * WIFI_SSID = "SSID";
const char * WIFI_PASSWORD = "PASSWORD";

void setup() {
Serial.begin(9600);
mySerial.begin(9600);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
Serial.print("connecting");
while (WiFi.status() != WL_CONNECTED) {
Serial.print(".");
delay(100);
}
Serial.println();
Serial.print("connected: ");
Serial.println(WiFi.localIP());
ThingSpeak.begin(client);
}

void loop() {
// Check WiFi Status
while (mySerial.available())
{
const size_t capacity = JSON_OBJECT_SIZE(7) + 100;
DynamicJsonBuffer jsonBuffer(capacity);
JsonObject& root = jsonBuffer.parseObject(mySerial);
if (!root.success()) {
Serial.println("parseObject() failed");
return;
}

float C = root["C"];
float N = root["N"];
float O = root["O"];
float H = root["H"];

Serial.print(C, 5);  Serial.print(",");
Serial.print(N, 5);  Serial.print(",");
Serial.print(O, 5);  Serial.print(",");
Serial.print(H, 5);  

//Sending Gas Data to ThingSpeak
ThingSpeak.setField(1, C);
ThingSpeak.setField(2, N);
ThingSpeak.setField(3, O);
ThingSpeak.setField(5, H);
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ThingSpeak.writeFields(myChannelNumber,myWriteAPIKey);
}
}

APPENDIX G

Total number of samples used = 1000

AUC = Area Under the ROC curve

The ROC curve is a plot of the True Positive Rate (TPR) on the vertical axis, given as 

TPR =  TP
TP+ FN

Against the False Positive Rate (FPR) on the horizontal axis, given as 

FPR =  FP
TN + FP

TP = True Positive (Number of times the model predicted positive outcomes correctly)

FP = False Positive (Number of times the model predicted positive outcomes wrongly)

TN = True Negative (Number of times the model predicted negative outcomes correctly)

FN = False Negative (Number of times the model predicted negative outcomes wrongly)

ImageNet Accuracy =  
TP+ TN

TP+ FN+ TN + FP

=  
520 + 245

520 + 0 + 245 + 235
= 765

1000
= 0.77 = 77 %

ImageNet AUC =  0.64

Confusion Matrix of AlexNet
Predicted Class

Non-
Explosive

Explosive

TP FNNon-
Explosive 430 335

FP TN

A
ct

ua
l C

la
ss

Explosive
0 235
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ImageNet Accuracy =  
TP+ TN

TP+ FN+ TN + FP

=  
430 + 235

430 + 335+ 235 + 0
= 665

1000
= 0.67 = 67 %

ImageNet AUC =  0.71

Confusion Matrix of RNN
Predicted Class

Explosive Non-
Explosive

TP FNExplosive
332 345
FP TN

A
ct

ua
l C

la
ss

Non-
Explosive 35 288

ImageNet Accuracy =  
TP+ TN

TP+ FN+ TN + FP

=  
332 + 288

332 + 345 + 228 + 35
= 665

1000
= 0.62 = 62 %

ImageNet AUC =  0.63

Confusion Matrix of SVM
Predicted Class

Explosive Non-
Explosive

TP FNExplosive
521 245
FP TN

A
ct

ua
l C

la
ss

Non-
Explosive 0 234

ImageNet Accuracy =  
TP+ TN

TP+ FN+ TN + FP
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=  
521 + 234

521 + 245 + 234 + 0
= 755

1000
= 0.76 = 76 %

ImageNet AUC =  0.50

Summary

Model ImageNet AlexNet RNN SVM Current 
Model

Accuracy 77% 67% 62% 76% 99.7%
AUC 0.64 0.71 0.63 0.50 0.89

 APPENDIX H

RNN:

Dense Layers: 1

Activation function: sigmoid

droupout: 0.5

learning rate: 0.01

optimizer: rmsprop

SVM:

kernel type: sigmoid

c parameter: 0.5

ImageNet:

Dense Layers: 2

Dense layer = 4096 units, activation function ReLu

Dense layer = 4096 units, activation function ReLu

Dense layer = 1000 units, activation function sigmoid

Optimizer: SGD (0.9)

learning rate: 0.01

Batch size: 128

drupout:0.5
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AlexNet:

Dense Layers: 2

Dense layer = 4096 units, activation function ReLu

Dense layer = 4096 units, activation function ReLu

Dense layer = 10 units, activation function sigmoid

Optimizer: SGD (0.9)

learning rate: 0.01

Batch size: 128

drupout:0.5
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